Note
Go to the end to download the full example code
Zero-dimensional reactor with surface chemistry#
This example illustrates how to use class Reactor
for zero-dimensional
simulations including both homogeneous and heterogeneous chemistry.
Initialization#
clear all
close all
tic
help surfreactor
Set the initial conditions#
t = 870.0;
gas = Solution('ptcombust.yaml', 'gas');
gas.TPX = {t, OneAtm, 'CH4:0.01, O2:0.21, N2:0.78'};
% The surface reaction mechanism describes catalytic combustion of
% methane on platinum, and is from Deutschmann et al., 26th
% Symp. (Intl.) on Combustion,1996, pp. 1747-1754
surf = Interface('ptcombust.yaml', 'Pt_surf', gas);
surf.TP = {t, surf.P};
nsp = gas.nSpecies;
nSurfSp = surf.nSpecies;
% create a reactor, and insert the gas
r = IdealGasReactor(gas);
r.V = 1.0e-6;
% create a reservoir to represent the environment
a = Solution('air.yaml', 'air', 'none');
a.TP = {t, OneAtm};
env = Reservoir(a);
% Define a wall between the reactor and the environment and
% make it flexible, so that the pressure in the reactor is held
% at the environment pressure.
w = Wall(r, env);
A = 1e-4; % Wall area
% Add a reacting surface, with an area matching that of the wall
rsurf = ReactorSurface(surf, r, A);
% set the wall area and heat transfer coefficient.
w.area = A;
w.heatTransferCoeff = 1.0e1; % W/m2/K
% set expansion rate parameter. dV/dt = KA(P_1 - P_2)
w.expansionRateCoeff = 1.0;
network = ReactorNet({r});
% setTolerances(network, 1.0e-8, 1.0e-12);
nSteps = 100;
p0 = r.P;
names = {'CH4', 'CO', 'CO2', 'H2O'};
x = zeros([nSteps 4]);
tim = zeros(nSteps, 1);
temp = zeros(nSteps, 1);
pres = zeros(nSteps, 1);
cov = zeros([nSteps nSurfSp]);
t = 0;
dt = 0.1;
t0 = cputime;
for n = 1:nSteps
t = t + dt;
network.advance(t);
tim(n) = t;
temp(n) = r.T;
pres(n) = r.P - p0;
cov(n, :) = surf.X';
x(n, :) = gas.moleFraction(names);
end
disp(['CPU time = ' num2str(cputime - t0)]);
Plotting#
clf;
subplot(2, 2, 1);
plot(tim, temp);
xlabel('Time (s)');
ylabel('Temperature (K)');
subplot(2, 2, 2);
plot(tim, pres);
axis([0 5 -0.1 0.1]);
xlabel('Time (s)');
ylabel('Delta Pressure (Pa)');
subplot(2, 2, 3);
semilogy(tim, cov);
xlabel('Time (s)');
ylabel('Coverages');
legend(surf.speciesNames);
subplot(2, 2, 4);
plot(tim, x);
xlabel('Time (s)');
ylabel('Mole Fractions');
legend(names);
clear all
toc