Note
Go to the end to download the full example code
Blasius BVP solver#
This example solves the Blasius boundary value problem for the velocity profile of a
laminar boundary layer over a flat plate. It uses class BoundaryValueProblem
,
defined in BoundaryValueProblem.h, which provides a
simplified interface to the boundary value problem capabilities of Cantera.
// This file is part of Cantera. See License.txt in the top-level directory or
// at https://cantera.org/license.txt for license and copyright information.
#include "BoundaryValueProblem.h"
using Cantera::npos;
This class solves the Blasius boundary value problem on the domain (0,L):
\[ \begin{align}\begin{aligned}\frac{d\zeta}{dz} = u\\\frac{d^2u}{dz^2} + 0.5\zeta \frac{du}{dz} = 0\end{aligned}\end{align} \]
with boundary conditions
\[\begin{split}\zeta(0) & = 0 \\
u(0) & = 0 \\
u(L) & = 1\end{split}\]
Note that this is formulated as a system of two equations, with maximum order of 2, rather than as a single third-order boundary value problem. For reasons having to do with the band structure of the Jacobian, no equation in the system should have order greater than 2.
class Blasius : public BVP::BoundaryValueProblem
{
public:
// This problem has two components (zeta and u)
Blasius(int np, double L) : BVP::BoundaryValueProblem(2, np, 0.0, L) {
// specify the component bounds, error tolerances, and names.
BVP::Component A;
A.lower = -200.0;
A.upper = 200.0;
A.rtol = 1.0e-12;
A.atol = 1.0e-15;
A.name = "zeta";
setComponent(0, A); // zeta will be component 0
BVP::Component B;
B.lower = -200.0;
B.upper = 200.0;
B.rtol = 1.0e-12;
B.atol = 1.0e-15;
B.name = "u";
setComponent(1, B); // u will be component 1
}
// specify guesses for the initial values. These can be anything
// that leads to a converged solution.
double initialValue(size_t n, size_t j) override {
switch (n) {
case 0:
return 0.1*z(j);
case 1:
return 0.5*z(j);
default:
return 0.0;
}
}
// Specify the residual function. This is where the ODE system and boundary
// conditions are specified. The solver will attempt to find a solution
// x so that rsd is zero.
void eval(size_t jg, double* x, double* rsd, int* diag, double rdt) override {
size_t jpt = jg - firstPoint();
size_t jmin, jmax;
if (jg == npos) { // evaluate all points
jmin = 0;
jmax = m_points - 1;
} else { // evaluate points for Jacobian
jmin = std::max<size_t>(jpt, 1) - 1;
jmax = std::min(jpt+1,m_points-1);
}
for (size_t j = jmin; j <= jmax; j++) {
if (j == 0) {
rsd[index(0,j)] = zeta(x,j);
rsd[index(1,j)] = u(x,j);
} else if (j == m_points - 1) {
rsd[index(0,j)] = leftFirstDeriv(x,0,j) - u(x,j);
rsd[index(1,j)] = u(x,j) - 1.0;
} else {
rsd[index(0,j)] = leftFirstDeriv(x,0,j) - u(x,j);
rsd[index(1,j)] = cdif2(x,1,j) + 0.5*zeta(x,j)*centralFirstDeriv(x,1,j)
- rdt*(value(x,1,j) - prevSoln(1,j));
diag[index(1,j)] = 1;
}
}
}
private:
// for convenience only. Note that the compiler will inline these.
double zeta(double* x, int j) {
return value(x,0,j);
}
double u(double* x, int j) {
return value(x,1,j);
}
};
int main()
{
try {
// Specify a problem on (0,10), with an initial uniform grid of
// 6 points.
auto eqs = std::make_shared<Blasius>(6, 10.0);
// Solve the equations, refining the grid as needed
eqs->solve(1);
// write the solution to a CSV file.
eqs->writeCSV("blasius.csv");
return 0;
} catch (std::exception& err) {
std::cerr << err.what() << std::endl;
return -1;
}
}