Note
Go to the end to download the full example code
Adiabatic, constant pressure reactor#
This example solves the same problem as reactor1.m, but does it using one of MATLAB’s ODE integrators, rather than using the Cantera Reactor class. See reactor_ode.m for the implementation of the governing equations.
function plotdata = ignite(g)
clear all
close all
tic
help ignite
if nargin == 1
gas = g;
else
gas = Solution('gri30.yaml', 'gri30');
end
% set the initial conditions
gas.TPX = {1001.0, OneAtm, 'H2:2,O2:1,N2:4'};
gas.basis = 'mass';
y0 = [gas.U
1.0 / gas.D
gas.Y'];
time_interval = [0 0.001];
options = odeset('RelTol', 1.e-5, 'AbsTol', 1.e-12, 'Stats', 'on');
t0 = cputime;
out = ode15s(@reactor_ode, time_interval, y0, options, gas, ...
@vdot, @area, @heatflux);
disp(['CPU time = ' num2str(cputime - t0)]);
plotdata = output(out, gas);
Time-varying boundary conditions#
The functions below may be defined arbitrarily to set the reactor boundary conditions - the rate of change of volume, the heat flux, and the area.
Rate of change of volume. Any arbitrary function may be implemented.
- Input arguments:
- t:
time
- vol:
volume
- gas:
ideal gas object
function v = vdot(t, vol, gas)
%v = 0.0; %uncomment for constant volume
v = 1.e11 * (gas.P - 101325.0); % holds pressure very
% close to 1 atm
end
heat flux (W/m^2).
function q = heatflux(t, gas)
q = 0.0; % adiabatic
end
surface area (m^2). Used only to compute heat transfer.
function a = area(t, vol)
a = 1.0;
end
Since the solution variables used by the reactor
function are
not necessarily those desired for output, this function is called
after the integration is complete to generate the desired
outputs.
function pv = output(s, gas)
times = s.x;
soln = s.y;
[~, n] = size(times);
pv = zeros(gas.nSpecies + 4, n);
gas.TP = {1001.0, OneAtm};
for j = 1:n
ss = soln(:, j);
y = ss(3:end);
mass = sum(y);
u_mass = ss(1) / mass;
v_mass = ss(2) / mass;
gas.Y = y;
gas.UV = {u_mass, v_mass};
pv(1, j) = times(j);
pv(2, j) = gas.T;
pv(3, j) = gas.D;
pv(4, j) = gas.P;
pv(5:end, j) = y;
end
% plot the temperature and OH mass fractions.
figure(1);
plot(pv(1, :), pv(2, :));
xlabel('time');
ylabel('Temperature');
title(['Final T = ' num2str(pv(2, end)) ' K']);
figure(2);
ioh = gas.speciesIndex('OH');
plot(pv(1, :), pv(4 + ioh, :));
xlabel('time');
ylabel('Mass Fraction');
title('OH Mass Fraction');
end
toc
end