Cantera  3.1.0a1
Loading...
Searching...
No Matches
CoverageDependentSurfPhase Class Reference

A thermodynamic model for a coverage-dependent surface phase, applying surface species lateral interaction correction factors to the ideal surface phase properties. More...

#include <CoverageDependentSurfPhase.h>

Inheritance diagram for CoverageDependentSurfPhase:
[legend]

Detailed Description

A thermodynamic model for a coverage-dependent surface phase, applying surface species lateral interaction correction factors to the ideal surface phase properties.

The ideal surface phase assumes no lateral interaction among surface species. This coverage-dependent surface phase allows adding lateral interaction correction terms to the ideal surface phase (SurfPhase) thermodynamic properties so that more accurate surface species thermochemistry can be achieved.

Coverage-dependent Thermodynamic Properties Formulations

At a low-coverage limit, a surface species thermochemistry is the same as that of ideal surface species since there are no adsorbates in the vicinity to cause lateral interaction. Therefore, it is logical to set ideal surface species properties as the low-coverage limit and add lateral interaction terms to them as excess properties. Accordingly, standard state coverage-dependent enthalpy, entropy, and heat capacity of a surface species \( k \) can be formulated as follows.

\[ h_k^o(T,\theta) = \underbrace{h_k^{o,ideal}(T) + \int_{298}^{T}c_{p,k}^{o,ideal}(T)dT}_{\text{low-coverage limit}} + \underbrace{h_k^{o,cov}(T,\theta) + \int_{298}^{T}c_{p,k}^{o,cov}(T,\theta)dT}_{\text{coverage dependence}} \]

\[ s_k^o(T,\theta) = \underbrace{s_k^{o,ideal}(T) + \int_{298}^{T}\frac{c_{p,k}^{o,ideal}(T)}{T}dT}_{\text{low-coverage limit}} + \underbrace{s_k^{o,cov}(T,\theta) + \int_{298}^{T}\frac{c_{p,k}^{o,cov}(T,\theta)}{T}dT}_{\text{coverage dependence}} \]

\[ c_{p,k}^o(T,\theta) = \underbrace{c_{p,k}^{o,ideal}(T)}_{\text{low-coverage limit}} + \underbrace{c_{p,k}^{o,cov}(T,\theta)}_{\text{coverage dependence}} \]

Mathematical Models for Coverage-dependent Correction Terms

Coverage-dependent correction terms for enthalpy and entropy can be calculated with one of the four algebraic models: linear dependency model, polynomial dependency model, piecewise-linear, and interpolative dependency model. In the dependency model equations, a coverage-dependent correction term is denoted by \( f^{cov} \) where \( f \) can be either enthalpy ( \( h^{cov} \)) or entropy ( \( s^{cov} \)). Because lateral interaction can compose of both self- and cross- interactions, the total correction term of species \( k \) is a sum of all interacting species \( j \) which can include itself. Coefficients \( c^{(1)}_{k,j}-c^{(6)}_{k,j} \) are user-provided parameters that can be given in a input yaml.

Linear dependency model:

\[ f^{cov}_k(\theta) = \sum_j c^{(1)}_{k,j} \theta_j \]

Polynomial dependency model:

\[ f^{cov}_k(\theta) = \sum_j \left[c^{(1)}_{k,j}\theta_j + c^{(2)}_{k,j}\theta_j^2 + c^{(3)}_{k,j}\theta_j^3 + c^{(4)}_{k,j}\theta_j^4\right] \]

Piecewise-linear dependency model:

\[ f^{cov}_k(\theta) = \sum_j \left\{ \begin{array}{ll} c^{(5)}_{k,j}\theta_j & \text{, } \theta_j \leq \theta^\text{change}_{k,j} \\ \left[c^{(6)}_{k,j}(\theta_j - \theta^\text{change}_{k,j}) + (c^{(5)}_{k,j}\theta^\text{change}_{k,j})\right] & \text{, } \theta_j > \theta^\text{change}_{k,j} \\ \end{array} \right. \]

Interpolative dependency model:

\[ f^{cov}_k(\theta) = \sum_j \left[\frac{f^{cov}_k(\theta^{higher}_j) - f^{cov}_k(\theta^{lower}_j)} {\theta^{higher}_j - \theta^{lower}_j}(\theta_j - \theta^{lower}_j) + f^{cov}_k (\theta^{lower}_j)\right] \\ \text{where } \theta^{lower}_j \leq \theta_j < \theta^{higher}_j \]

Coverage-dependent heat capacity is calculated using an equation with a quadratic dependence on coverages and a logarithmic dependence on temperature. Temperature is nondimensionalized with a reference temperature of 1 K. The coverage-dependent heat capacity of species \( k \) is a sum of all quantities dependent on coverage of species \( j \). Coefficients \( c^{(a)}_{k,j} \text{ and } c^{(b)}_{k,j} \) are user-provided parameters that can be given in an input yaml.

Coverage-dependent heat capacity model:

\[ c^{cov}_{p,k}(\theta) = \sum_j \left(c^{(a)}_{k,j} \ln\left(\frac{T}{1\text{ K}}\right) + c^{(b)}_{k,j}\right) \theta_j^2 \]

Definition at line 126 of file CoverageDependentSurfPhase.h.

Classes

struct  HeatCapacityDependency
 A struct to store sets of parameters used in coverage-dependent heat capacity calculations by a log-quadratic equation in CoverageDependentSurfPhase. More...
 
struct  InterpolativeDependency
 A struct to store sets of parameters used in coverage-dependent enthalpy and entropy calculations by a interpolative equation or a piecewise-linear equation in CoverageDependentSurfPhase. More...
 
struct  PolynomialDependency
 A struct to store sets of parameters used in coverage-dependent enthalpy and entropy calculations by a polynomial equation or a linear equation in CoverageDependentSurfPhase. More...
 

Public Member Functions

 CoverageDependentSurfPhase (const string &infile="", const string &id="")
 Construct and initialize a CoverageDependentSurfPhase ThermoPhase object directly from an ASCII input file.
 
string type () const override
 String indicating the thermodynamic model implemented.
 
void addInterpolativeDependency (const InterpolativeDependency &int_deps)
 Add interpolative coverage dependence parameters for a species.
 
void initThermo () override
 Initialize the ThermoPhase object after all species have been set up.
 
bool addSpecies (shared_ptr< Species > spec) override
 Add a Species to this Phase.
 
void getParameters (AnyMap &phaseNode) const override
 Store the parameters of a ThermoPhase object such that an identical one could be reconstructed using the newThermo(AnyMap&) function.
 
void getSpeciesParameters (const string &name, AnyMap &speciesNode) const override
 Get phase-specific parameters of a Species object such that an identical one could be reconstructed and added to this phase.
 
Methods calculating reference state thermodynamic properties

Reference state properties are evaluated at \( T \text{ and } \theta^{ref} \).

With coverage fixed at a reference value, reference state properties are effectively only dependent on temperature.

void getEnthalpy_RT_ref (double *hrt) const override
 Returns the vector of nondimensional enthalpies of the reference state at the current temperature of the solution and the reference pressure for the species.
 
void getEntropy_R_ref (double *sr) const override
 Returns the vector of nondimensional entropies of the reference state at the current temperature of the solution and the reference pressure for each species.
 
void getCp_R_ref (double *cpr) const override
 Returns the vector of nondimensional constant pressure heat capacities of the reference state at the current temperature of the solution and reference pressure for each species.
 
void getGibbs_RT_ref (double *grt) const override
 Returns the vector of nondimensional Gibbs Free Energies of the reference state at the current temperature of the solution and the reference pressure for the species.
 
Methods calculating standard state thermodynamic properties

Standard state properties are evaluated at \( T \text{ and } \theta \), and thus are dependent both on temperature and coverage.

void getEnthalpy_RT (double *hrt) const override
 Get the nondimensionalized standard state enthalpy vector.
 
void getEntropy_R (double *sr) const override
 Get the nondimensionalized standard state entropy vector.
 
void getCp_R (double *cpr) const override
 Get the nondimensionalized standard state heat capacity vector.
 
void getGibbs_RT (double *grt) const override
 Get the nondimensionalized standard state gibbs free energy vector.
 
void getPureGibbs (double *g) const override
 Get the standard state gibbs free energy vector. Units: J/kmol.
 
void getStandardChemPotentials (double *mu0) const override
 Get the standard state chemical potential vector. Units: J/kmol.
 
Methods calculating partial molar thermodynamic properties

Partial molar properties are evaluated at \( T \text{ and } \theta \), and thus are dependent both on temperature and coverage.

void getPartialMolarEnthalpies (double *hbar) const override
 Get the partial molar enthalpy vector. Units: J/kmol.
 
void getPartialMolarEntropies (double *sbar) const override
 Get the partial molar entropy vector. Units: J/kmol/K.
 
void getPartialMolarCp (double *cpbar) const override
 Get the partial molar heat capacity vector. Units: J/kmol/K.
 
void getChemPotentials (double *mu) const override
 Get the chemical potential vector. Units: J/kmol.
 
Methods calculating Phase thermodynamic properties

Phase properties are evaluated at \( T \text{ and } \theta \), and thus are dependent both on temperature and coverage.

double enthalpy_mole () const override
 Return the solution's molar enthalpy. Units: J/kmol.
 
double entropy_mole () const override
 Return the solution's molar entropy. Units: J/kmol/K.
 
double cp_mole () const override
 Return the solution's molar heat capacity. Units: J/kmol/K.
 
- Public Member Functions inherited from SurfPhase
 SurfPhase (const string &infile="", const string &id="")
 Construct and initialize a SurfPhase ThermoPhase object directly from an input file.
 
string type () const override
 String indicating the thermodynamic model implemented.
 
bool isCompressible () const override
 Return whether phase represents a compressible substance.
 
double enthalpy_mole () const override
 Return the Molar Enthalpy. Units: J/kmol.
 
double intEnergy_mole () const override
 Return the Molar Internal Energy. Units: J/kmol.
 
double entropy_mole () const override
 Return the Molar Entropy. Units: J/kmol-K.
 
double cp_mole () const override
 Molar heat capacity at constant pressure. Units: J/kmol/K.
 
double cv_mole () const override
 Molar heat capacity at constant volume. Units: J/kmol/K.
 
void getChemPotentials (double *mu) const override
 Get the species chemical potentials. Units: J/kmol.
 
void getPartialMolarEnthalpies (double *hbar) const override
 Returns an array of partial molar enthalpies for the species in the mixture.
 
void getPartialMolarEntropies (double *sbar) const override
 Returns an array of partial molar entropies of the species in the solution.
 
void getPartialMolarCp (double *cpbar) const override
 Return an array of partial molar heat capacities for the species in the mixture.
 
void getPartialMolarVolumes (double *vbar) const override
 Return an array of partial molar volumes for the species in the mixture.
 
void getStandardChemPotentials (double *mu0) const override
 Get the array of chemical potentials at unit activity for the species at their standard states at the current T and P of the solution.
 
void getActivityConcentrations (double *c) const override
 Return a vector of activity concentrations for each species.
 
double standardConcentration (size_t k=0) const override
 Return the standard concentration for the kth species.
 
double logStandardConc (size_t k=0) const override
 Natural logarithm of the standard concentration of the kth species.
 
void initThermo () override
 Initialize the ThermoPhase object after all species have been set up.
 
void getParameters (AnyMap &phaseNode) const override
 Store the parameters of a ThermoPhase object such that an identical one could be reconstructed using the newThermo(AnyMap&) function.
 
bool addSpecies (shared_ptr< Species > spec) override
 Add a Species to this Phase.
 
double molarVolume () const override
 Since interface phases have no volume, this returns 0.0.
 
double siteDensity () const
 Returns the site density.
 
double size (size_t k) const
 Returns the number of sites occupied by one molecule of species k.
 
void setSiteDensity (double n0)
 Set the site density of the surface phase (kmol m-2)
 
void getGibbs_RT (double *grt) const override
 Get the nondimensional Gibbs functions for the species in their standard states at the current T and P of the solution.
 
void getEnthalpy_RT (double *hrt) const override
 Get the nondimensional Enthalpy functions for the species at their standard states at the current T and P of the solution.
 
void getEntropy_R (double *sr) const override
 Get the array of nondimensional Entropy functions for the standard state species at the current T and P of the solution.
 
void getCp_R (double *cpr) const override
 Get the nondimensional Heat Capacities at constant pressure for the species standard states at the current T and P of the solution.
 
void getStandardVolumes (double *vol) const override
 Get the molar volumes of the species standard states at the current T and P of the solution.
 
double pressure () const override
 Return the thermodynamic pressure (Pa).
 
void setPressure (double p) override
 Set the internally stored pressure (Pa) at constant temperature and composition.
 
void getPureGibbs (double *g) const override
 Get the Gibbs functions for the standard state of the species at the current T and P of the solution.
 
void getGibbs_RT_ref (double *grt) const override
 Returns the vector of nondimensional Gibbs Free Energies of the reference state at the current temperature of the solution and the reference pressure for the species.
 
void getEnthalpy_RT_ref (double *hrt) const override
 Returns the vector of nondimensional enthalpies of the reference state at the current temperature of the solution and the reference pressure for the species.
 
void getEntropy_R_ref (double *er) const override
 Returns the vector of nondimensional entropies of the reference state at the current temperature of the solution and the reference pressure for each species.
 
void getCp_R_ref (double *cprt) const override
 Returns the vector of nondimensional constant pressure heat capacities of the reference state at the current temperature of the solution and reference pressure for each species.
 
void setCoverages (const double *theta)
 Set the surface site fractions to a specified state.
 
void setCoveragesNoNorm (const double *theta)
 Set the surface site fractions to a specified state.
 
void setCoveragesByName (const string &cov)
 Set the coverages from a string of colon-separated name:value pairs.
 
void setCoveragesByName (const Composition &cov)
 Set the coverages from a map of name:value pairs.
 
void getCoverages (double *theta) const
 Return a vector of surface coverages.
 
void setState (const AnyMap &state) override
 Set the state using an AnyMap containing any combination of properties supported by the thermodynamic model.
 
- Public Member Functions inherited from ThermoPhase
 ThermoPhase ()=default
 Constructor.
 
double RT () const
 Return the Gas Constant multiplied by the current temperature.
 
double equivalenceRatio () const
 Compute the equivalence ratio for the current mixture from available oxygen and required oxygen.
 
string type () const override
 String indicating the thermodynamic model implemented.
 
virtual bool isIdeal () const
 Boolean indicating whether phase is ideal.
 
virtual string phaseOfMatter () const
 String indicating the mechanical phase of the matter in this Phase.
 
virtual double refPressure () const
 Returns the reference pressure in Pa.
 
virtual double minTemp (size_t k=npos) const
 Minimum temperature for which the thermodynamic data for the species or phase are valid.
 
double Hf298SS (const size_t k) const
 Report the 298 K Heat of Formation of the standard state of one species (J kmol-1)
 
virtual void modifyOneHf298SS (const size_t k, const double Hf298New)
 Modify the value of the 298 K Heat of Formation of one species in the phase (J kmol-1)
 
virtual void resetHf298 (const size_t k=npos)
 Restore the original heat of formation of one or more species.
 
virtual double maxTemp (size_t k=npos) const
 Maximum temperature for which the thermodynamic data for the species are valid.
 
bool chargeNeutralityNecessary () const
 Returns the chargeNeutralityNecessity boolean.
 
virtual double gibbs_mole () const
 Molar Gibbs function. Units: J/kmol.
 
virtual double isothermalCompressibility () const
 Returns the isothermal compressibility. Units: 1/Pa.
 
virtual double thermalExpansionCoeff () const
 Return the volumetric thermal expansion coefficient. Units: 1/K.
 
virtual double soundSpeed () const
 Return the speed of sound. Units: m/s.
 
void setElectricPotential (double v)
 Set the electric potential of this phase (V).
 
double electricPotential () const
 Returns the electric potential of this phase (V).
 
virtual int activityConvention () const
 This method returns the convention used in specification of the activities, of which there are currently two, molar- and molality-based conventions.
 
virtual int standardStateConvention () const
 This method returns the convention used in specification of the standard state, of which there are currently two, temperature based, and variable pressure based.
 
virtual Units standardConcentrationUnits () const
 Returns the units of the "standard concentration" for this phase.
 
virtual void getActivities (double *a) const
 Get the array of non-dimensional activities at the current solution temperature, pressure, and solution concentration.
 
virtual void getActivityCoefficients (double *ac) const
 Get the array of non-dimensional molar-based activity coefficients at the current solution temperature, pressure, and solution concentration.
 
virtual void getLnActivityCoefficients (double *lnac) const
 Get the array of non-dimensional molar-based ln activity coefficients at the current solution temperature, pressure, and solution concentration.
 
void getElectrochemPotentials (double *mu) const
 Get the species electrochemical potentials.
 
virtual void getPartialMolarIntEnergies (double *ubar) const
 Return an array of partial molar internal energies for the species in the mixture.
 
virtual void getIntEnergy_RT (double *urt) const
 Returns the vector of nondimensional Internal Energies of the standard state species at the current T and P of the solution.
 
virtual void getGibbs_ref (double *g) const
 Returns the vector of the Gibbs function of the reference state at the current temperature of the solution and the reference pressure for the species.
 
virtual void getIntEnergy_RT_ref (double *urt) const
 Returns the vector of nondimensional internal Energies of the reference state at the current temperature of the solution and the reference pressure for each species.
 
virtual void getStandardVolumes_ref (double *vol) const
 Get the molar volumes of the species reference states at the current T and P_ref of the solution.
 
double enthalpy_mass () const
 Specific enthalpy. Units: J/kg.
 
double intEnergy_mass () const
 Specific internal energy. Units: J/kg.
 
double entropy_mass () const
 Specific entropy. Units: J/kg/K.
 
double gibbs_mass () const
 Specific Gibbs function. Units: J/kg.
 
double cp_mass () const
 Specific heat at constant pressure. Units: J/kg/K.
 
double cv_mass () const
 Specific heat at constant volume. Units: J/kg/K.
 
virtual void setState_TPX (double t, double p, const double *x)
 Set the temperature (K), pressure (Pa), and mole fractions.
 
virtual void setState_TPX (double t, double p, const Composition &x)
 Set the temperature (K), pressure (Pa), and mole fractions.
 
virtual void setState_TPX (double t, double p, const string &x)
 Set the temperature (K), pressure (Pa), and mole fractions.
 
virtual void setState_TPY (double t, double p, const double *y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase.
 
virtual void setState_TPY (double t, double p, const Composition &y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase.
 
virtual void setState_TPY (double t, double p, const string &y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase.
 
virtual void setState_TP (double t, double p)
 Set the temperature (K) and pressure (Pa)
 
virtual void setState_HP (double h, double p, double tol=1e-9)
 Set the internally stored specific enthalpy (J/kg) and pressure (Pa) of the phase.
 
virtual void setState_UV (double u, double v, double tol=1e-9)
 Set the specific internal energy (J/kg) and specific volume (m^3/kg).
 
virtual void setState_SP (double s, double p, double tol=1e-9)
 Set the specific entropy (J/kg/K) and pressure (Pa).
 
virtual void setState_SV (double s, double v, double tol=1e-9)
 Set the specific entropy (J/kg/K) and specific volume (m^3/kg).
 
virtual void setState_ST (double s, double t, double tol=1e-9)
 Set the specific entropy (J/kg/K) and temperature (K).
 
virtual void setState_TV (double t, double v, double tol=1e-9)
 Set the temperature (K) and specific volume (m^3/kg).
 
virtual void setState_PV (double p, double v, double tol=1e-9)
 Set the pressure (Pa) and specific volume (m^3/kg).
 
virtual void setState_UP (double u, double p, double tol=1e-9)
 Set the specific internal energy (J/kg) and pressure (Pa).
 
virtual void setState_VH (double v, double h, double tol=1e-9)
 Set the specific volume (m^3/kg) and the specific enthalpy (J/kg)
 
virtual void setState_TH (double t, double h, double tol=1e-9)
 Set the temperature (K) and the specific enthalpy (J/kg)
 
virtual void setState_SH (double s, double h, double tol=1e-9)
 Set the specific entropy (J/kg/K) and the specific enthalpy (J/kg)
 
virtual void setState_DP (double rho, double p)
 Set the density (kg/m**3) and pressure (Pa) at constant composition.
 
void setMixtureFraction (double mixFrac, const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the mixture fraction = kg fuel / (kg oxidizer + kg fuel)
 
void setMixtureFraction (double mixFrac, const string &fuelComp, const string &oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the mixture fraction = kg fuel / (kg oxidizer + kg fuel)
 
void setMixtureFraction (double mixFrac, const Composition &fuelComp, const Composition &oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the mixture fraction = kg fuel / (kg oxidizer + kg fuel)
 
double mixtureFraction (const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar, const string &element="Bilger") const
 Compute the mixture fraction = kg fuel / (kg oxidizer + kg fuel) for the current mixture given fuel and oxidizer compositions.
 
double mixtureFraction (const string &fuelComp, const string &oxComp, ThermoBasis basis=ThermoBasis::molar, const string &element="Bilger") const
 Compute the mixture fraction = kg fuel / (kg oxidizer + kg fuel) for the current mixture given fuel and oxidizer compositions.
 
double mixtureFraction (const Composition &fuelComp, const Composition &oxComp, ThermoBasis basis=ThermoBasis::molar, const string &element="Bilger") const
 Compute the mixture fraction = kg fuel / (kg oxidizer + kg fuel) for the current mixture given fuel and oxidizer compositions.
 
void setEquivalenceRatio (double phi, const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the equivalence ratio.
 
void setEquivalenceRatio (double phi, const string &fuelComp, const string &oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the equivalence ratio.
 
void setEquivalenceRatio (double phi, const Composition &fuelComp, const Composition &oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the equivalence ratio.
 
double equivalenceRatio (const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the equivalence ratio for the current mixture given the compositions of fuel and oxidizer.
 
double equivalenceRatio (const string &fuelComp, const string &oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the equivalence ratio for the current mixture given the compositions of fuel and oxidizer.
 
double equivalenceRatio (const Composition &fuelComp, const Composition &oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the equivalence ratio for the current mixture given the compositions of fuel and oxidizer.
 
double stoichAirFuelRatio (const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the stoichiometric air to fuel ratio (kg oxidizer / kg fuel) given fuel and oxidizer compositions.
 
double stoichAirFuelRatio (const string &fuelComp, const string &oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the stoichiometric air to fuel ratio (kg oxidizer / kg fuel) given fuel and oxidizer compositions.
 
double stoichAirFuelRatio (const Composition &fuelComp, const Composition &oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the stoichiometric air to fuel ratio (kg oxidizer / kg fuel) given fuel and oxidizer compositions.
 
void equilibrate (const string &XY, const string &solver="auto", double rtol=1e-9, int max_steps=50000, int max_iter=100, int estimate_equil=0, int log_level=0)
 Equilibrate a ThermoPhase object.
 
virtual void setToEquilState (const double *mu_RT)
 This method is used by the ChemEquil equilibrium solver.
 
virtual bool compatibleWithMultiPhase () const
 Indicates whether this phase type can be used with class MultiPhase for equilibrium calculations.
 
virtual double critTemperature () const
 Critical temperature (K).
 
virtual double critPressure () const
 Critical pressure (Pa).
 
virtual double critVolume () const
 Critical volume (m3/kmol).
 
virtual double critCompressibility () const
 Critical compressibility (unitless).
 
virtual double critDensity () const
 Critical density (kg/m3).
 
virtual double satTemperature (double p) const
 Return the saturation temperature given the pressure.
 
virtual double satPressure (double t)
 Return the saturation pressure given the temperature.
 
virtual double vaporFraction () const
 Return the fraction of vapor at the current conditions.
 
virtual void setState_Tsat (double t, double x)
 Set the state to a saturated system at a particular temperature.
 
virtual void setState_Psat (double p, double x)
 Set the state to a saturated system at a particular pressure.
 
void setState_TPQ (double T, double P, double Q)
 Set the temperature, pressure, and vapor fraction (quality).
 
bool addSpecies (shared_ptr< Species > spec) override
 Add a Species to this Phase.
 
void modifySpecies (size_t k, shared_ptr< Species > spec) override
 Modify the thermodynamic data associated with a species.
 
virtual MultiSpeciesThermospeciesThermo (int k=-1)
 Return a changeable reference to the calculation manager for species reference-state thermodynamic properties.
 
virtual const MultiSpeciesThermospeciesThermo (int k=-1) const
 
void initThermoFile (const string &inputFile, const string &id)
 Initialize a ThermoPhase object using an input file.
 
virtual void setParameters (const AnyMap &phaseNode, const AnyMap &rootNode=AnyMap())
 Set equation of state parameters from an AnyMap phase description.
 
AnyMap parameters (bool withInput=true) const
 Returns the parameters of a ThermoPhase object such that an identical one could be reconstructed using the newThermo(AnyMap&) function.
 
const AnyMapinput () const
 Access input data associated with the phase description.
 
AnyMapinput ()
 
void invalidateCache () override
 Invalidate any cached values which are normally updated only when a change in state is detected.
 
virtual void getdlnActCoeffds (const double dTds, const double *const dXds, double *dlnActCoeffds) const
 Get the change in activity coefficients wrt changes in state (temp, mole fraction, etc) along a line in parameter space or along a line in physical space.
 
virtual void getdlnActCoeffdlnX_diag (double *dlnActCoeffdlnX_diag) const
 Get the array of ln mole fraction derivatives of the log activity coefficients - diagonal component only.
 
virtual void getdlnActCoeffdlnN_diag (double *dlnActCoeffdlnN_diag) const
 Get the array of log species mole number derivatives of the log activity coefficients.
 
virtual void getdlnActCoeffdlnN (const size_t ld, double *const dlnActCoeffdlnN)
 Get the array of derivatives of the log activity coefficients with respect to the log of the species mole numbers.
 
virtual void getdlnActCoeffdlnN_numderiv (const size_t ld, double *const dlnActCoeffdlnN)
 
virtual string report (bool show_thermo=true, double threshold=-1e-14) const
 returns a summary of the state of the phase as a string
 
- Public Member Functions inherited from Phase
 Phase ()=default
 Default constructor.
 
 Phase (const Phase &)=delete
 
Phaseoperator= (const Phase &)=delete
 
virtual bool isPure () const
 Return whether phase represents a pure (single species) substance.
 
virtual bool hasPhaseTransition () const
 Return whether phase represents a substance with phase transitions.
 
virtual bool isCompressible () const
 Return whether phase represents a compressible substance.
 
virtual map< string, size_t > nativeState () const
 Return a map of properties defining the native state of a substance.
 
string nativeMode () const
 Return string acronym representing the native state of a Phase.
 
virtual vector< string > fullStates () const
 Return a vector containing full states defining a phase.
 
virtual vector< string > partialStates () const
 Return a vector of settable partial property sets within a phase.
 
virtual size_t stateSize () const
 Return size of vector defining internal state of the phase.
 
void saveState (vector< double > &state) const
 Save the current internal state of the phase.
 
virtual void saveState (size_t lenstate, double *state) const
 Write to array 'state' the current internal state.
 
void restoreState (const vector< double > &state)
 Restore a state saved on a previous call to saveState.
 
virtual void restoreState (size_t lenstate, const double *state)
 Restore the state of the phase from a previously saved state vector.
 
double molecularWeight (size_t k) const
 Molecular weight of species k.
 
void getMolecularWeights (double *weights) const
 Copy the vector of molecular weights into array weights.
 
const vector< double > & molecularWeights () const
 Return a const reference to the internal vector of molecular weights.
 
const vector< double > & inverseMolecularWeights () const
 Return a const reference to the internal vector of molecular weights.
 
void getCharges (double *charges) const
 Copy the vector of species charges into array charges.
 
virtual void setMolesNoTruncate (const double *const N)
 Set the state of the object with moles in [kmol].
 
double elementalMassFraction (const size_t m) const
 Elemental mass fraction of element m.
 
double elementalMoleFraction (const size_t m) const
 Elemental mole fraction of element m.
 
double charge (size_t k) const
 Dimensionless electrical charge of a single molecule of species k The charge is normalized by the the magnitude of the electron charge.
 
double chargeDensity () const
 Charge density [C/m^3].
 
size_t nDim () const
 Returns the number of spatial dimensions (1, 2, or 3)
 
void setNDim (size_t ndim)
 Set the number of spatial dimensions (1, 2, or 3).
 
virtual bool ready () const
 Returns a bool indicating whether the object is ready for use.
 
int stateMFNumber () const
 Return the State Mole Fraction Number.
 
virtual void invalidateCache ()
 Invalidate any cached values which are normally updated only when a change in state is detected.
 
bool caseSensitiveSpecies () const
 Returns true if case sensitive species names are enforced.
 
void setCaseSensitiveSpecies (bool cflag=true)
 Set flag that determines whether case sensitive species are enforced in look-up operations, for example speciesIndex.
 
vector< double > getCompositionFromMap (const Composition &comp) const
 Converts a Composition to a vector with entries for each species Species that are not specified are set to zero in the vector.
 
void massFractionsToMoleFractions (const double *Y, double *X) const
 Converts a mixture composition from mole fractions to mass fractions.
 
void moleFractionsToMassFractions (const double *X, double *Y) const
 Converts a mixture composition from mass fractions to mole fractions.
 
string name () const
 Return the name of the phase.
 
void setName (const string &nm)
 Sets the string name for the phase.
 
string elementName (size_t m) const
 Name of the element with index m.
 
size_t elementIndex (const string &name) const
 Return the index of element named 'name'.
 
const vector< string > & elementNames () const
 Return a read-only reference to the vector of element names.
 
double atomicWeight (size_t m) const
 Atomic weight of element m.
 
double entropyElement298 (size_t m) const
 Entropy of the element in its standard state at 298 K and 1 bar.
 
int atomicNumber (size_t m) const
 Atomic number of element m.
 
int elementType (size_t m) const
 Return the element constraint type Possible types include:
 
int changeElementType (int m, int elem_type)
 Change the element type of the mth constraint Reassigns an element type.
 
const vector< double > & atomicWeights () const
 Return a read-only reference to the vector of atomic weights.
 
size_t nElements () const
 Number of elements.
 
void checkElementIndex (size_t m) const
 Check that the specified element index is in range.
 
void checkElementArraySize (size_t mm) const
 Check that an array size is at least nElements().
 
double nAtoms (size_t k, size_t m) const
 Number of atoms of element m in species k.
 
size_t speciesIndex (const string &name) const
 Returns the index of a species named 'name' within the Phase object.
 
string speciesName (size_t k) const
 Name of the species with index k.
 
const vector< string > & speciesNames () const
 Return a const reference to the vector of species names.
 
size_t nSpecies () const
 Returns the number of species in the phase.
 
void checkSpeciesIndex (size_t k) const
 Check that the specified species index is in range.
 
void checkSpeciesArraySize (size_t kk) const
 Check that an array size is at least nSpecies().
 
void setMoleFractionsByName (const Composition &xMap)
 Set the species mole fractions by name.
 
void setMoleFractionsByName (const string &x)
 Set the mole fractions of a group of species by name.
 
void setMassFractionsByName (const Composition &yMap)
 Set the species mass fractions by name.
 
void setMassFractionsByName (const string &x)
 Set the species mass fractions by name.
 
void setState_TD (double t, double rho)
 Set the internally stored temperature (K) and density (kg/m^3)
 
Composition getMoleFractionsByName (double threshold=0.0) const
 Get the mole fractions by name.
 
double moleFraction (size_t k) const
 Return the mole fraction of a single species.
 
double moleFraction (const string &name) const
 Return the mole fraction of a single species.
 
Composition getMassFractionsByName (double threshold=0.0) const
 Get the mass fractions by name.
 
double massFraction (size_t k) const
 Return the mass fraction of a single species.
 
double massFraction (const string &name) const
 Return the mass fraction of a single species.
 
void getMoleFractions (double *const x) const
 Get the species mole fraction vector.
 
virtual void setMoleFractions (const double *const x)
 Set the mole fractions to the specified values.
 
virtual void setMoleFractions_NoNorm (const double *const x)
 Set the mole fractions to the specified values without normalizing.
 
void getMassFractions (double *const y) const
 Get the species mass fractions.
 
const double * massFractions () const
 Return a const pointer to the mass fraction array.
 
virtual void setMassFractions (const double *const y)
 Set the mass fractions to the specified values and normalize them.
 
virtual void setMassFractions_NoNorm (const double *const y)
 Set the mass fractions to the specified values without normalizing.
 
virtual void getConcentrations (double *const c) const
 Get the species concentrations (kmol/m^3).
 
virtual double concentration (const size_t k) const
 Concentration of species k.
 
virtual void setConcentrations (const double *const conc)
 Set the concentrations to the specified values within the phase.
 
virtual void setConcentrationsNoNorm (const double *const conc)
 Set the concentrations without ignoring negative concentrations.
 
double temperature () const
 Temperature (K).
 
virtual double electronTemperature () const
 Electron Temperature (K)
 
virtual double density () const
 Density (kg/m^3).
 
virtual double molarDensity () const
 Molar density (kmol/m^3).
 
virtual void setDensity (const double density_)
 Set the internally stored density (kg/m^3) of the phase.
 
virtual void setTemperature (double temp)
 Set the internally stored temperature of the phase (K).
 
virtual void setElectronTemperature (double etemp)
 Set the internally stored electron temperature of the phase (K).
 
double mean_X (const double *const Q) const
 Evaluate the mole-fraction-weighted mean of an array Q.
 
double mean_X (const vector< double > &Q) const
 Evaluate the mole-fraction-weighted mean of an array Q.
 
double meanMolecularWeight () const
 The mean molecular weight. Units: (kg/kmol)
 
double sum_xlogx () const
 Evaluate \( \sum_k X_k \ln X_k \).
 
size_t addElement (const string &symbol, double weight=-12345.0, int atomicNumber=0, double entropy298=ENTROPY298_UNKNOWN, int elem_type=CT_ELEM_TYPE_ABSPOS)
 Add an element.
 
void addSpeciesAlias (const string &name, const string &alias)
 Add a species alias (that is, a user-defined alternative species name).
 
virtual vector< string > findIsomers (const Composition &compMap) const
 Return a vector with isomers names matching a given composition map.
 
virtual vector< string > findIsomers (const string &comp) const
 Return a vector with isomers names matching a given composition string.
 
shared_ptr< Speciesspecies (const string &name) const
 Return the Species object for the named species.
 
shared_ptr< Speciesspecies (size_t k) const
 Return the Species object for species whose index is k.
 
void ignoreUndefinedElements ()
 Set behavior when adding a species containing undefined elements to just skip the species.
 
void addUndefinedElements ()
 Set behavior when adding a species containing undefined elements to add those elements to the phase.
 
void throwUndefinedElements ()
 Set the behavior when adding a species containing undefined elements to throw an exception.
 

Protected Attributes

vector< double > m_cov
 Temporary storage for the coverages.
 
vector< double > m_h_cov
 Temporary storage for the coverage-dependent enthalpies.
 
vector< double > m_s_cov
 Temporary storage for the coverage-dependent entropies.
 
vector< double > m_cp_cov
 Temporary storage for the coverage-dependent heat capacities.
 
vector< double > m_mu_cov
 Temporary storage for the coverage-dependent chemical potentials.
 
vector< double > m_enthalpy
 Temporary storage for the sum of reference state enthalpies and coverage-dependent enthalpies.
 
vector< double > m_entropy
 Temporary storage for the sum of reference state entropies and coverage-dependent entropies.
 
vector< double > m_heatcapacity
 Temporary storage for the sum of reference state heat capacities and coverage-dependent heat capacities.
 
vector< double > m_chempot
 Temporary storage for the sum of reference state chemical potentials and coverage-dependent chemical potentials.
 
vector< PolynomialDependencym_PolynomialDependency
 Array of enthalpy and entropy coverage dependency parameters used in the linear and polynomial dependency equations.
 
vector< InterpolativeDependencym_InterpolativeDependency
 Array of enthalpy and entropy coverage dependency parameters used in the piecewise-linear and interpolative dependency equations.
 
vector< HeatCapacityDependencym_HeatCapacityDependency
 Array of heat capacity coverage dependency parameters.
 
- Protected Attributes inherited from SurfPhase
double m_n0 = 1.0
 Surface site density (kmol m-2)
 
vector< double > m_speciesSize
 Vector of species sizes (number of sites occupied). length m_kk.
 
double m_logn0
 log of the surface site density
 
double m_press = OneAtm
 Current value of the pressure (Pa)
 
vector< double > m_h0
 Temporary storage for the reference state enthalpies.
 
vector< double > m_s0
 Temporary storage for the reference state entropies.
 
vector< double > m_cp0
 Temporary storage for the reference state heat capacities.
 
vector< double > m_mu0
 Temporary storage for the reference state Gibbs energies.
 
vector< double > m_work
 Temporary work array.
 
vector< double > m_logsize
 vector storing the log of the size of each species.
 
- Protected Attributes inherited from ThermoPhase
MultiSpeciesThermo m_spthermo
 Pointer to the calculation manager for species reference-state thermodynamic properties.
 
AnyMap m_input
 Data supplied via setParameters.
 
double m_phi = 0.0
 Stored value of the electric potential for this phase. Units are Volts.
 
bool m_chargeNeutralityNecessary = false
 Boolean indicating whether a charge neutrality condition is a necessity.
 
int m_ssConvention = cSS_CONVENTION_TEMPERATURE
 Contains the standard state convention.
 
double m_tlast = 0.0
 last value of the temperature processed by reference state
 
- Protected Attributes inherited from Phase
ValueCache m_cache
 Cached for saved calculations within each ThermoPhase.
 
size_t m_kk = 0
 Number of species in the phase.
 
size_t m_ndim = 3
 Dimensionality of the phase.
 
vector< double > m_speciesComp
 Atomic composition of the species.
 
vector< double > m_speciesCharge
 Vector of species charges. length m_kk.
 
map< string, shared_ptr< Species > > m_species
 
UndefElement::behavior m_undefinedElementBehavior = UndefElement::add
 Flag determining behavior when adding species with an undefined element.
 
bool m_caseSensitiveSpecies = false
 Flag determining whether case sensitive species names are enforced.
 

Private Member Functions

void _updateCovDepThermo () const
 Update the species coverage-dependent thermodynamic functions.
 
void _updateTotalThermo () const
 Update the total (reference state + coverage-dependent) thermodynamic functions.
 

Private Attributes

double m_theta_ref
 Storage for the user-defined reference state coverage which has to be greater than 0.0 and less than or equal to 1.0.
 
int m_stateNumlast
 Last value of the state number processed.
 

Additional Inherited Members

- Protected Member Functions inherited from SurfPhase
void compositionChanged () override
 Apply changes to the state which are needed after the composition changes.
 
void _updateThermo (bool force=false) const
 Update the species reference state thermodynamic functions.
 
virtual void getParameters (AnyMap &phaseNode) const
 Store the parameters of a ThermoPhase object such that an identical one could be reconstructed using the newThermo(AnyMap&) function.
 
- Protected Member Functions inherited from Phase
void assertCompressible (const string &setter) const
 Ensure that phase is compressible.
 
void assignDensity (const double density_)
 Set the internally stored constant density (kg/m^3) of the phase.
 
void setMolecularWeight (const int k, const double mw)
 Set the molecular weight of a single species to a given value.
 
virtual void compositionChanged ()
 Apply changes to the state which are needed after the composition changes.
 

Constructor & Destructor Documentation

◆ CoverageDependentSurfPhase()

CoverageDependentSurfPhase ( const string &  infile = "",
const string &  id = "" 
)
explicit

Construct and initialize a CoverageDependentSurfPhase ThermoPhase object directly from an ASCII input file.

Parameters
infilename of the input file. If blank, an empty phase will be created.
idname of the phase id in the file. If blank, the first phase in the file is used.

Definition at line 124 of file CoverageDependentSurfPhase.cpp.

Member Function Documentation

◆ type()

string type ( ) const
inlineoverridevirtual

String indicating the thermodynamic model implemented.

Usually corresponds to the name of the derived class, less any suffixes such as "Phase", TP", "VPSS", etc.

Since
Starting in Cantera 3.0, the name returned by this method corresponds to the canonical name used in the YAML input format.

Reimplemented from Phase.

Definition at line 223 of file CoverageDependentSurfPhase.h.

◆ addInterpolativeDependency()

void addInterpolativeDependency ( const InterpolativeDependency int_deps)

Add interpolative coverage dependence parameters for a species.

Parameters
int_depslist of parameters as an InterpolativeDependency object

Definition at line 133 of file CoverageDependentSurfPhase.cpp.

◆ initThermo()

void initThermo ( )
overridevirtual

Initialize the ThermoPhase object after all species have been set up.

This method is provided to allow subclasses to perform any initialization required after all species have been added. For example, it might be used to resize internal work arrays that must have an entry for each species. The base class implementation does nothing, and subclasses that do not require initialization do not need to overload this method. Derived classes which do override this function should call their parent class's implementation of this function as their last action.

When importing from an AnyMap phase description (or from a YAML file), setupPhase() adds all the species, stores the input data in m_input, and then calls this method to set model parameters from the data stored in m_input.

Reimplemented from ThermoPhase.

Definition at line 157 of file CoverageDependentSurfPhase.cpp.

◆ addSpecies()

bool addSpecies ( shared_ptr< Species spec)
overridevirtual

Add a Species to this Phase.

Returns true if the species was successfully added, or false if the species was ignored.

Derived classes which need to size arrays according to the number of species should overload this method. The derived class implementation should call the base class method, and, if this returns true (indicating that the species has been added), adjust their array sizes accordingly.

See also
ignoreUndefinedElements addUndefinedElements throwUndefinedElements

Reimplemented from Phase.

Definition at line 215 of file CoverageDependentSurfPhase.cpp.

◆ getParameters()

void getParameters ( AnyMap phaseNode) const
overridevirtual

Store the parameters of a ThermoPhase object such that an identical one could be reconstructed using the newThermo(AnyMap&) function.

This does not include user-defined fields available in input().

Reimplemented from ThermoPhase.

Definition at line 232 of file CoverageDependentSurfPhase.cpp.

◆ getSpeciesParameters()

void getSpeciesParameters ( const string &  name,
AnyMap speciesNode 
) const
overridevirtual

Get phase-specific parameters of a Species object such that an identical one could be reconstructed and added to this phase.

Parameters
nameName of the species
speciesNodeMapping to be populated with parameters

Reimplemented from ThermoPhase.

Definition at line 238 of file CoverageDependentSurfPhase.cpp.

◆ getEnthalpy_RT_ref()

void getEnthalpy_RT_ref ( double *  hrt) const
overridevirtual

Returns the vector of nondimensional enthalpies of the reference state at the current temperature of the solution and the reference pressure for the species.

Parameters
hrtOutput vector containing the nondimensional reference state enthalpies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 329 of file CoverageDependentSurfPhase.cpp.

◆ getEntropy_R_ref()

void getEntropy_R_ref ( double *  er) const
overridevirtual

Returns the vector of nondimensional entropies of the reference state at the current temperature of the solution and the reference pressure for each species.

Parameters
erOutput vector containing the nondimensional reference state entropies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 335 of file CoverageDependentSurfPhase.cpp.

◆ getCp_R_ref()

void getCp_R_ref ( double *  cprt) const
overridevirtual

Returns the vector of nondimensional constant pressure heat capacities of the reference state at the current temperature of the solution and reference pressure for each species.

Parameters
cprtOutput vector of nondimensional reference state heat capacities at constant pressure for the species. Length: m_kk

Reimplemented from ThermoPhase.

Definition at line 341 of file CoverageDependentSurfPhase.cpp.

◆ getGibbs_RT_ref()

void getGibbs_RT_ref ( double *  grt) const
overridevirtual

Returns the vector of nondimensional Gibbs Free Energies of the reference state at the current temperature of the solution and the reference pressure for the species.

Parameters
grtOutput vector containing the nondimensional reference state Gibbs Free energies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 323 of file CoverageDependentSurfPhase.cpp.

◆ getEnthalpy_RT()

void getEnthalpy_RT ( double *  hrt) const
overridevirtual

Get the nondimensionalized standard state enthalpy vector.

\[ \frac{h^o_k(T,\theta)}{RT} = \frac{h^{ref}_k(T) + h^{cov}_k(T,\theta) + \int_{298}^{T} c^{cov}_{p,k}(T,\theta)dT}{RT} \]

Reimplemented from ThermoPhase.

Definition at line 347 of file CoverageDependentSurfPhase.cpp.

◆ getEntropy_R()

void getEntropy_R ( double *  sr) const
overridevirtual

Get the nondimensionalized standard state entropy vector.

\[ \frac{s^o_k(T,\theta)}{R} = \frac{s^{ref}_k(T) + s^{cov}_k(T,\theta) + \int_{298}^{T}\frac{c^{cov}_{p,k}(T,\theta)}{T}dT}{R} - \ln\left(\frac{1}{\theta_{ref}}\right) \]

Reimplemented from ThermoPhase.

Definition at line 353 of file CoverageDependentSurfPhase.cpp.

◆ getCp_R()

void getCp_R ( double *  cpr) const
overridevirtual

Get the nondimensionalized standard state heat capacity vector.

\[ \frac{c^o_{p,k}(T,\theta)}{RT} = \frac{c^{ref}_{p,k}(T) + c^{cov}_{p,k}(T,\theta)}{RT} \]

Reimplemented from ThermoPhase.

Definition at line 365 of file CoverageDependentSurfPhase.cpp.

◆ getGibbs_RT()

void getGibbs_RT ( double *  grt) const
overridevirtual

Get the nondimensionalized standard state gibbs free energy vector.

\[ \frac{g^o_k(T,\theta)}{RT} = \frac{h^o_k(T,\theta)}{RT} + \frac{s^o_k(T,\theta)}{R} \]

Reimplemented from ThermoPhase.

Definition at line 371 of file CoverageDependentSurfPhase.cpp.

◆ getPureGibbs()

void getPureGibbs ( double *  g) const
overridevirtual

Get the standard state gibbs free energy vector. Units: J/kmol.

\[ g^o_k(T,\theta) = h^o_k(T,\theta) + Ts^o_k(T,\theta) \]

Reimplemented from ThermoPhase.

Definition at line 383 of file CoverageDependentSurfPhase.cpp.

◆ getStandardChemPotentials()

void getStandardChemPotentials ( double *  mu0) const
overridevirtual

Get the standard state chemical potential vector. Units: J/kmol.

\[ \mu^o_k(T,\theta) = h^o_k(T,\theta) + Ts^o_k(T,\theta) \]

Reimplemented from ThermoPhase.

Definition at line 391 of file CoverageDependentSurfPhase.cpp.

◆ getPartialMolarEnthalpies()

void getPartialMolarEnthalpies ( double *  hbar) const
overridevirtual

Get the partial molar enthalpy vector. Units: J/kmol.

\[ \tilde{h}_k(T,\theta) = h^o_k(T,\theta) \]

Reimplemented from ThermoPhase.

Definition at line 403 of file CoverageDependentSurfPhase.cpp.

◆ getPartialMolarEntropies()

void getPartialMolarEntropies ( double *  sbar) const
overridevirtual

Get the partial molar entropy vector. Units: J/kmol/K.

\[ \tilde{s}_k(T,\theta) = s^o_k(T,\theta) - R\ln(\theta_k) \]

Reimplemented from ThermoPhase.

Definition at line 409 of file CoverageDependentSurfPhase.cpp.

◆ getPartialMolarCp()

void getPartialMolarCp ( double *  cpbar) const
overridevirtual

Get the partial molar heat capacity vector. Units: J/kmol/K.

\[ \tilde{c}_{p,k}(T,\theta) = c^o_{p,k}(T,\theta) \]

Reimplemented from ThermoPhase.

Definition at line 418 of file CoverageDependentSurfPhase.cpp.

◆ getChemPotentials()

void getChemPotentials ( double *  mu) const
overridevirtual

Get the chemical potential vector. Units: J/kmol.

\[ \mu_k(T,\theta) = \mu^o_k(T,\theta) + RT\ln(\theta_k) \]

Reimplemented from ThermoPhase.

Definition at line 424 of file CoverageDependentSurfPhase.cpp.

◆ enthalpy_mole()

double enthalpy_mole ( ) const
overridevirtual

Return the solution's molar enthalpy. Units: J/kmol.

\[ \hat h(T,\theta) = \sum_k \theta_k \tilde{h}_k(T,\theta) \]

Reimplemented from ThermoPhase.

Definition at line 433 of file CoverageDependentSurfPhase.cpp.

◆ entropy_mole()

double entropy_mole ( ) const
overridevirtual

Return the solution's molar entropy. Units: J/kmol/K.

\[ \hat s(T,\theta) = \sum_k \theta_k \tilde{s}_k(T,\theta) \]

Reimplemented from ThermoPhase.

Definition at line 439 of file CoverageDependentSurfPhase.cpp.

◆ cp_mole()

double cp_mole ( ) const
overridevirtual

Return the solution's molar heat capacity. Units: J/kmol/K.

\[ \hat{c_p}(T,\theta) = \sum_k \theta_k \tilde{c_p}_k(T,\theta) \]

Reimplemented from ThermoPhase.

Definition at line 450 of file CoverageDependentSurfPhase.cpp.

◆ _updateCovDepThermo()

void _updateCovDepThermo ( ) const
private

Update the species coverage-dependent thermodynamic functions.

The coverage-dependent enthalpy and entropy are only re-evaluated if the coverage has changed. The coverage-dependent heat capacity is only re-evaluated if the coverage or temperature has changed.

Definition at line 456 of file CoverageDependentSurfPhase.cpp.

◆ _updateTotalThermo()

void _updateTotalThermo ( ) const
private

Update the total (reference state + coverage-dependent) thermodynamic functions.

Calls subroutines for both ideal species thermodynamic update and coverage-dependent species thermodynamic update.

Definition at line 530 of file CoverageDependentSurfPhase.cpp.

Member Data Documentation

◆ m_cov

vector<double> m_cov
mutableprotected

Temporary storage for the coverages.

Definition at line 381 of file CoverageDependentSurfPhase.h.

◆ m_h_cov

vector<double> m_h_cov
mutableprotected

Temporary storage for the coverage-dependent enthalpies.

Definition at line 384 of file CoverageDependentSurfPhase.h.

◆ m_s_cov

vector<double> m_s_cov
mutableprotected

Temporary storage for the coverage-dependent entropies.

Definition at line 387 of file CoverageDependentSurfPhase.h.

◆ m_cp_cov

vector<double> m_cp_cov
mutableprotected

Temporary storage for the coverage-dependent heat capacities.

Definition at line 390 of file CoverageDependentSurfPhase.h.

◆ m_mu_cov

vector<double> m_mu_cov
mutableprotected

Temporary storage for the coverage-dependent chemical potentials.

Definition at line 393 of file CoverageDependentSurfPhase.h.

◆ m_enthalpy

vector<double> m_enthalpy
mutableprotected

Temporary storage for the sum of reference state enthalpies and coverage-dependent enthalpies.

Definition at line 397 of file CoverageDependentSurfPhase.h.

◆ m_entropy

vector<double> m_entropy
mutableprotected

Temporary storage for the sum of reference state entropies and coverage-dependent entropies.

Definition at line 401 of file CoverageDependentSurfPhase.h.

◆ m_heatcapacity

vector<double> m_heatcapacity
mutableprotected

Temporary storage for the sum of reference state heat capacities and coverage-dependent heat capacities.

Definition at line 405 of file CoverageDependentSurfPhase.h.

◆ m_chempot

vector<double> m_chempot
mutableprotected

Temporary storage for the sum of reference state chemical potentials and coverage-dependent chemical potentials.

Definition at line 409 of file CoverageDependentSurfPhase.h.

◆ m_PolynomialDependency

vector<PolynomialDependency> m_PolynomialDependency
protected

Array of enthalpy and entropy coverage dependency parameters used in the linear and polynomial dependency equations.

Definition at line 413 of file CoverageDependentSurfPhase.h.

◆ m_InterpolativeDependency

vector<InterpolativeDependency> m_InterpolativeDependency
protected

Array of enthalpy and entropy coverage dependency parameters used in the piecewise-linear and interpolative dependency equations.

Definition at line 417 of file CoverageDependentSurfPhase.h.

◆ m_HeatCapacityDependency

vector<HeatCapacityDependency> m_HeatCapacityDependency
protected

Array of heat capacity coverage dependency parameters.

Definition at line 420 of file CoverageDependentSurfPhase.h.

◆ m_theta_ref

double m_theta_ref
private

Storage for the user-defined reference state coverage which has to be greater than 0.0 and less than or equal to 1.0.

default = 1.0.

Definition at line 425 of file CoverageDependentSurfPhase.h.

◆ m_stateNumlast

int m_stateNumlast
mutableprivate

Last value of the state number processed.

Definition at line 428 of file CoverageDependentSurfPhase.h.


The documentation for this class was generated from the following files: