Cantera  3.1.0a1
Loading...
Searching...
No Matches
SurfPhase Class Reference

A simple thermodynamic model for a surface phase, assuming an ideal solution model. More...

#include <SurfPhase.h>

Inheritance diagram for SurfPhase:
[legend]

Detailed Description

A simple thermodynamic model for a surface phase, assuming an ideal solution model.

The surface consists of a grid of equivalent sites. Surface species may be defined to occupy one or more sites. The surface species are assumed to be independent, and thus the species form an ideal solution.

The density of surface sites is given by the variable \( n_0 \), which has SI units of kmol m-2.

Specification of Species Standard State Properties

It is assumed that the reference state thermodynamics may be obtained by a pointer to a populated species thermodynamic property manager class (see ThermoPhase::m_spthermo). How to relate pressure changes to the reference state thermodynamics is resolved at this level.

Pressure is defined as an independent variable in this phase. However, it has no effect on any quantities, as the molar concentration is a constant.

Therefore, The standard state internal energy for species k is equal to the enthalpy for species k.

\[ u^o_k = h^o_k \]

Also, the standard state chemical potentials, entropy, and heat capacities are independent of pressure. The standard state Gibbs free energy is obtained from the enthalpy and entropy functions.

Specification of Solution Thermodynamic Properties

The activity of species defined in the phase is given by

\[ a_k = \theta_k \]

The chemical potential for species k is equal to

\[ \mu_k(T,P) = \mu^o_k(T) + R T \ln \theta_k \]

Pressure is defined as an independent variable in this phase. However, it has no effect on any quantities, as the molar concentration is a constant.

The internal energy for species k is equal to the enthalpy for species k

\[ u_k = h_k \]

The entropy for the phase is given by the following relation, which is independent of the pressure:

\[ s_k(T,P) = s^o_k(T) - R \ln \theta_k \]

Application within Kinetics Managers

The activity concentration, \( C^a_k \), used by the kinetics manager, is equal to the actual concentration, \( C^s_k \), and is given by the following expression.

\[ C^a_k = C^s_k = \frac{\theta_k n_0}{s_k} \]

The standard concentration for species k is:

\[ C^0_k = \frac{n_0}{s_k} \]

An example phase definition is given in the YAML API Reference.

Definition at line 97 of file SurfPhase.h.

Public Member Functions

 SurfPhase (const string &infile="", const string &id="")
 Construct and initialize a SurfPhase ThermoPhase object directly from an input file.
 
string type () const override
 String indicating the thermodynamic model implemented.
 
bool isCompressible () const override
 Return whether phase represents a compressible substance.
 
double enthalpy_mole () const override
 Return the Molar Enthalpy. Units: J/kmol.
 
double intEnergy_mole () const override
 Return the Molar Internal Energy. Units: J/kmol.
 
double entropy_mole () const override
 Return the Molar Entropy. Units: J/kmol-K.
 
double cp_mole () const override
 Molar heat capacity at constant pressure. Units: J/kmol/K.
 
double cv_mole () const override
 Molar heat capacity at constant volume. Units: J/kmol/K.
 
void getChemPotentials (double *mu) const override
 Get the species chemical potentials. Units: J/kmol.
 
void getPartialMolarEnthalpies (double *hbar) const override
 Returns an array of partial molar enthalpies for the species in the mixture.
 
void getPartialMolarEntropies (double *sbar) const override
 Returns an array of partial molar entropies of the species in the solution.
 
void getPartialMolarCp (double *cpbar) const override
 Return an array of partial molar heat capacities for the species in the mixture.
 
void getPartialMolarVolumes (double *vbar) const override
 Return an array of partial molar volumes for the species in the mixture.
 
void getStandardChemPotentials (double *mu0) const override
 Get the array of chemical potentials at unit activity for the species at their standard states at the current T and P of the solution.
 
void getActivityConcentrations (double *c) const override
 Return a vector of activity concentrations for each species.
 
double standardConcentration (size_t k=0) const override
 Return the standard concentration for the kth species.
 
double logStandardConc (size_t k=0) const override
 Natural logarithm of the standard concentration of the kth species.
 
void initThermo () override
 Initialize the ThermoPhase object after all species have been set up.
 
void getParameters (AnyMap &phaseNode) const override
 Store the parameters of a ThermoPhase object such that an identical one could be reconstructed using the newThermo(AnyMap&) function.
 
bool addSpecies (shared_ptr< Species > spec) override
 Add a Species to this Phase.
 
double molarVolume () const override
 Since interface phases have no volume, this returns 0.0.
 
double siteDensity () const
 Returns the site density.
 
double size (size_t k) const
 Returns the number of sites occupied by one molecule of species k.
 
void setSiteDensity (double n0)
 Set the site density of the surface phase (kmol m-2)
 
void getGibbs_RT (double *grt) const override
 Get the nondimensional Gibbs functions for the species in their standard states at the current T and P of the solution.
 
void getEnthalpy_RT (double *hrt) const override
 Get the nondimensional Enthalpy functions for the species at their standard states at the current T and P of the solution.
 
void getEntropy_R (double *sr) const override
 Get the array of nondimensional Entropy functions for the standard state species at the current T and P of the solution.
 
void getCp_R (double *cpr) const override
 Get the nondimensional Heat Capacities at constant pressure for the species standard states at the current T and P of the solution.
 
void getStandardVolumes (double *vol) const override
 Get the molar volumes of the species standard states at the current T and P of the solution.
 
double pressure () const override
 Return the thermodynamic pressure (Pa).
 
void setPressure (double p) override
 Set the internally stored pressure (Pa) at constant temperature and composition.
 
void getPureGibbs (double *g) const override
 Get the Gibbs functions for the standard state of the species at the current T and P of the solution.
 
void getGibbs_RT_ref (double *grt) const override
 Returns the vector of nondimensional Gibbs Free Energies of the reference state at the current temperature of the solution and the reference pressure for the species.
 
void getEnthalpy_RT_ref (double *hrt) const override
 Returns the vector of nondimensional enthalpies of the reference state at the current temperature of the solution and the reference pressure for the species.
 
void getEntropy_R_ref (double *er) const override
 Returns the vector of nondimensional entropies of the reference state at the current temperature of the solution and the reference pressure for each species.
 
void getCp_R_ref (double *cprt) const override
 Returns the vector of nondimensional constant pressure heat capacities of the reference state at the current temperature of the solution and reference pressure for each species.
 
void setCoverages (const double *theta)
 Set the surface site fractions to a specified state.
 
void setCoveragesNoNorm (const double *theta)
 Set the surface site fractions to a specified state.
 
void setCoveragesByName (const string &cov)
 Set the coverages from a string of colon-separated name:value pairs.
 
void setCoveragesByName (const Composition &cov)
 Set the coverages from a map of name:value pairs.
 
void getCoverages (double *theta) const
 Return a vector of surface coverages.
 
void setState (const AnyMap &state) override
 Set the state using an AnyMap containing any combination of properties supported by the thermodynamic model.
 
- Public Member Functions inherited from ThermoPhase
 ThermoPhase ()=default
 Constructor.
 
double RT () const
 Return the Gas Constant multiplied by the current temperature.
 
double equivalenceRatio () const
 Compute the equivalence ratio for the current mixture from available oxygen and required oxygen.
 
string type () const override
 String indicating the thermodynamic model implemented.
 
virtual bool isIdeal () const
 Boolean indicating whether phase is ideal.
 
virtual string phaseOfMatter () const
 String indicating the mechanical phase of the matter in this Phase.
 
virtual double refPressure () const
 Returns the reference pressure in Pa.
 
virtual double minTemp (size_t k=npos) const
 Minimum temperature for which the thermodynamic data for the species or phase are valid.
 
double Hf298SS (const size_t k) const
 Report the 298 K Heat of Formation of the standard state of one species (J kmol-1)
 
virtual void modifyOneHf298SS (const size_t k, const double Hf298New)
 Modify the value of the 298 K Heat of Formation of one species in the phase (J kmol-1)
 
virtual void resetHf298 (const size_t k=npos)
 Restore the original heat of formation of one or more species.
 
virtual double maxTemp (size_t k=npos) const
 Maximum temperature for which the thermodynamic data for the species are valid.
 
bool chargeNeutralityNecessary () const
 Returns the chargeNeutralityNecessity boolean.
 
virtual double gibbs_mole () const
 Molar Gibbs function. Units: J/kmol.
 
virtual double isothermalCompressibility () const
 Returns the isothermal compressibility. Units: 1/Pa.
 
virtual double thermalExpansionCoeff () const
 Return the volumetric thermal expansion coefficient. Units: 1/K.
 
virtual double soundSpeed () const
 Return the speed of sound. Units: m/s.
 
void setElectricPotential (double v)
 Set the electric potential of this phase (V).
 
double electricPotential () const
 Returns the electric potential of this phase (V).
 
virtual int activityConvention () const
 This method returns the convention used in specification of the activities, of which there are currently two, molar- and molality-based conventions.
 
virtual int standardStateConvention () const
 This method returns the convention used in specification of the standard state, of which there are currently two, temperature based, and variable pressure based.
 
virtual Units standardConcentrationUnits () const
 Returns the units of the "standard concentration" for this phase.
 
virtual void getActivities (double *a) const
 Get the array of non-dimensional activities at the current solution temperature, pressure, and solution concentration.
 
virtual void getActivityCoefficients (double *ac) const
 Get the array of non-dimensional molar-based activity coefficients at the current solution temperature, pressure, and solution concentration.
 
virtual void getLnActivityCoefficients (double *lnac) const
 Get the array of non-dimensional molar-based ln activity coefficients at the current solution temperature, pressure, and solution concentration.
 
void getElectrochemPotentials (double *mu) const
 Get the species electrochemical potentials.
 
virtual void getPartialMolarIntEnergies (double *ubar) const
 Return an array of partial molar internal energies for the species in the mixture.
 
virtual void getIntEnergy_RT (double *urt) const
 Returns the vector of nondimensional Internal Energies of the standard state species at the current T and P of the solution.
 
virtual void getGibbs_ref (double *g) const
 Returns the vector of the Gibbs function of the reference state at the current temperature of the solution and the reference pressure for the species.
 
virtual void getIntEnergy_RT_ref (double *urt) const
 Returns the vector of nondimensional internal Energies of the reference state at the current temperature of the solution and the reference pressure for each species.
 
virtual void getStandardVolumes_ref (double *vol) const
 Get the molar volumes of the species reference states at the current T and P_ref of the solution.
 
double enthalpy_mass () const
 Specific enthalpy. Units: J/kg.
 
double intEnergy_mass () const
 Specific internal energy. Units: J/kg.
 
double entropy_mass () const
 Specific entropy. Units: J/kg/K.
 
double gibbs_mass () const
 Specific Gibbs function. Units: J/kg.
 
double cp_mass () const
 Specific heat at constant pressure. Units: J/kg/K.
 
double cv_mass () const
 Specific heat at constant volume. Units: J/kg/K.
 
virtual void setState_TPX (double t, double p, const double *x)
 Set the temperature (K), pressure (Pa), and mole fractions.
 
virtual void setState_TPX (double t, double p, const Composition &x)
 Set the temperature (K), pressure (Pa), and mole fractions.
 
virtual void setState_TPX (double t, double p, const string &x)
 Set the temperature (K), pressure (Pa), and mole fractions.
 
virtual void setState_TPY (double t, double p, const double *y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase.
 
virtual void setState_TPY (double t, double p, const Composition &y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase.
 
virtual void setState_TPY (double t, double p, const string &y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase.
 
virtual void setState_TP (double t, double p)
 Set the temperature (K) and pressure (Pa)
 
virtual void setState_HP (double h, double p, double tol=1e-9)
 Set the internally stored specific enthalpy (J/kg) and pressure (Pa) of the phase.
 
virtual void setState_UV (double u, double v, double tol=1e-9)
 Set the specific internal energy (J/kg) and specific volume (m^3/kg).
 
virtual void setState_SP (double s, double p, double tol=1e-9)
 Set the specific entropy (J/kg/K) and pressure (Pa).
 
virtual void setState_SV (double s, double v, double tol=1e-9)
 Set the specific entropy (J/kg/K) and specific volume (m^3/kg).
 
virtual void setState_ST (double s, double t, double tol=1e-9)
 Set the specific entropy (J/kg/K) and temperature (K).
 
virtual void setState_TV (double t, double v, double tol=1e-9)
 Set the temperature (K) and specific volume (m^3/kg).
 
virtual void setState_PV (double p, double v, double tol=1e-9)
 Set the pressure (Pa) and specific volume (m^3/kg).
 
virtual void setState_UP (double u, double p, double tol=1e-9)
 Set the specific internal energy (J/kg) and pressure (Pa).
 
virtual void setState_VH (double v, double h, double tol=1e-9)
 Set the specific volume (m^3/kg) and the specific enthalpy (J/kg)
 
virtual void setState_TH (double t, double h, double tol=1e-9)
 Set the temperature (K) and the specific enthalpy (J/kg)
 
virtual void setState_SH (double s, double h, double tol=1e-9)
 Set the specific entropy (J/kg/K) and the specific enthalpy (J/kg)
 
virtual void setState_DP (double rho, double p)
 Set the density (kg/m**3) and pressure (Pa) at constant composition.
 
void setMixtureFraction (double mixFrac, const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the mixture fraction = kg fuel / (kg oxidizer + kg fuel)
 
void setMixtureFraction (double mixFrac, const string &fuelComp, const string &oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the mixture fraction = kg fuel / (kg oxidizer + kg fuel)
 
void setMixtureFraction (double mixFrac, const Composition &fuelComp, const Composition &oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the mixture fraction = kg fuel / (kg oxidizer + kg fuel)
 
double mixtureFraction (const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar, const string &element="Bilger") const
 Compute the mixture fraction = kg fuel / (kg oxidizer + kg fuel) for the current mixture given fuel and oxidizer compositions.
 
double mixtureFraction (const string &fuelComp, const string &oxComp, ThermoBasis basis=ThermoBasis::molar, const string &element="Bilger") const
 Compute the mixture fraction = kg fuel / (kg oxidizer + kg fuel) for the current mixture given fuel and oxidizer compositions.
 
double mixtureFraction (const Composition &fuelComp, const Composition &oxComp, ThermoBasis basis=ThermoBasis::molar, const string &element="Bilger") const
 Compute the mixture fraction = kg fuel / (kg oxidizer + kg fuel) for the current mixture given fuel and oxidizer compositions.
 
void setEquivalenceRatio (double phi, const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the equivalence ratio.
 
void setEquivalenceRatio (double phi, const string &fuelComp, const string &oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the equivalence ratio.
 
void setEquivalenceRatio (double phi, const Composition &fuelComp, const Composition &oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the equivalence ratio.
 
double equivalenceRatio (const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the equivalence ratio for the current mixture given the compositions of fuel and oxidizer.
 
double equivalenceRatio (const string &fuelComp, const string &oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the equivalence ratio for the current mixture given the compositions of fuel and oxidizer.
 
double equivalenceRatio (const Composition &fuelComp, const Composition &oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the equivalence ratio for the current mixture given the compositions of fuel and oxidizer.
 
double stoichAirFuelRatio (const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the stoichiometric air to fuel ratio (kg oxidizer / kg fuel) given fuel and oxidizer compositions.
 
double stoichAirFuelRatio (const string &fuelComp, const string &oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the stoichiometric air to fuel ratio (kg oxidizer / kg fuel) given fuel and oxidizer compositions.
 
double stoichAirFuelRatio (const Composition &fuelComp, const Composition &oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the stoichiometric air to fuel ratio (kg oxidizer / kg fuel) given fuel and oxidizer compositions.
 
void equilibrate (const string &XY, const string &solver="auto", double rtol=1e-9, int max_steps=50000, int max_iter=100, int estimate_equil=0, int log_level=0)
 Equilibrate a ThermoPhase object.
 
virtual void setToEquilState (const double *mu_RT)
 This method is used by the ChemEquil equilibrium solver.
 
virtual bool compatibleWithMultiPhase () const
 Indicates whether this phase type can be used with class MultiPhase for equilibrium calculations.
 
virtual double critTemperature () const
 Critical temperature (K).
 
virtual double critPressure () const
 Critical pressure (Pa).
 
virtual double critVolume () const
 Critical volume (m3/kmol).
 
virtual double critCompressibility () const
 Critical compressibility (unitless).
 
virtual double critDensity () const
 Critical density (kg/m3).
 
virtual double satTemperature (double p) const
 Return the saturation temperature given the pressure.
 
virtual double satPressure (double t)
 Return the saturation pressure given the temperature.
 
virtual double vaporFraction () const
 Return the fraction of vapor at the current conditions.
 
virtual void setState_Tsat (double t, double x)
 Set the state to a saturated system at a particular temperature.
 
virtual void setState_Psat (double p, double x)
 Set the state to a saturated system at a particular pressure.
 
void setState_TPQ (double T, double P, double Q)
 Set the temperature, pressure, and vapor fraction (quality).
 
bool addSpecies (shared_ptr< Species > spec) override
 Add a Species to this Phase.
 
void modifySpecies (size_t k, shared_ptr< Species > spec) override
 Modify the thermodynamic data associated with a species.
 
virtual MultiSpeciesThermospeciesThermo (int k=-1)
 Return a changeable reference to the calculation manager for species reference-state thermodynamic properties.
 
virtual const MultiSpeciesThermospeciesThermo (int k=-1) const
 
void initThermoFile (const string &inputFile, const string &id)
 Initialize a ThermoPhase object using an input file.
 
virtual void setParameters (const AnyMap &phaseNode, const AnyMap &rootNode=AnyMap())
 Set equation of state parameters from an AnyMap phase description.
 
AnyMap parameters (bool withInput=true) const
 Returns the parameters of a ThermoPhase object such that an identical one could be reconstructed using the newThermo(AnyMap&) function.
 
virtual void getSpeciesParameters (const string &name, AnyMap &speciesNode) const
 Get phase-specific parameters of a Species object such that an identical one could be reconstructed and added to this phase.
 
const AnyMapinput () const
 Access input data associated with the phase description.
 
AnyMapinput ()
 
void invalidateCache () override
 Invalidate any cached values which are normally updated only when a change in state is detected.
 
virtual void getdlnActCoeffds (const double dTds, const double *const dXds, double *dlnActCoeffds) const
 Get the change in activity coefficients wrt changes in state (temp, mole fraction, etc) along a line in parameter space or along a line in physical space.
 
virtual void getdlnActCoeffdlnX_diag (double *dlnActCoeffdlnX_diag) const
 Get the array of ln mole fraction derivatives of the log activity coefficients - diagonal component only.
 
virtual void getdlnActCoeffdlnN_diag (double *dlnActCoeffdlnN_diag) const
 Get the array of log species mole number derivatives of the log activity coefficients.
 
virtual void getdlnActCoeffdlnN (const size_t ld, double *const dlnActCoeffdlnN)
 Get the array of derivatives of the log activity coefficients with respect to the log of the species mole numbers.
 
virtual void getdlnActCoeffdlnN_numderiv (const size_t ld, double *const dlnActCoeffdlnN)
 
virtual string report (bool show_thermo=true, double threshold=-1e-14) const
 returns a summary of the state of the phase as a string
 
- Public Member Functions inherited from Phase
 Phase ()=default
 Default constructor.
 
 Phase (const Phase &)=delete
 
Phaseoperator= (const Phase &)=delete
 
virtual bool isPure () const
 Return whether phase represents a pure (single species) substance.
 
virtual bool hasPhaseTransition () const
 Return whether phase represents a substance with phase transitions.
 
virtual bool isCompressible () const
 Return whether phase represents a compressible substance.
 
virtual map< string, size_t > nativeState () const
 Return a map of properties defining the native state of a substance.
 
string nativeMode () const
 Return string acronym representing the native state of a Phase.
 
virtual vector< string > fullStates () const
 Return a vector containing full states defining a phase.
 
virtual vector< string > partialStates () const
 Return a vector of settable partial property sets within a phase.
 
virtual size_t stateSize () const
 Return size of vector defining internal state of the phase.
 
void saveState (vector< double > &state) const
 Save the current internal state of the phase.
 
virtual void saveState (size_t lenstate, double *state) const
 Write to array 'state' the current internal state.
 
void restoreState (const vector< double > &state)
 Restore a state saved on a previous call to saveState.
 
virtual void restoreState (size_t lenstate, const double *state)
 Restore the state of the phase from a previously saved state vector.
 
double molecularWeight (size_t k) const
 Molecular weight of species k.
 
void getMolecularWeights (double *weights) const
 Copy the vector of molecular weights into array weights.
 
const vector< double > & molecularWeights () const
 Return a const reference to the internal vector of molecular weights.
 
const vector< double > & inverseMolecularWeights () const
 Return a const reference to the internal vector of molecular weights.
 
void getCharges (double *charges) const
 Copy the vector of species charges into array charges.
 
virtual void setMolesNoTruncate (const double *const N)
 Set the state of the object with moles in [kmol].
 
double elementalMassFraction (const size_t m) const
 Elemental mass fraction of element m.
 
double elementalMoleFraction (const size_t m) const
 Elemental mole fraction of element m.
 
double charge (size_t k) const
 Dimensionless electrical charge of a single molecule of species k The charge is normalized by the the magnitude of the electron charge.
 
double chargeDensity () const
 Charge density [C/m^3].
 
size_t nDim () const
 Returns the number of spatial dimensions (1, 2, or 3)
 
void setNDim (size_t ndim)
 Set the number of spatial dimensions (1, 2, or 3).
 
virtual bool ready () const
 Returns a bool indicating whether the object is ready for use.
 
int stateMFNumber () const
 Return the State Mole Fraction Number.
 
virtual void invalidateCache ()
 Invalidate any cached values which are normally updated only when a change in state is detected.
 
bool caseSensitiveSpecies () const
 Returns true if case sensitive species names are enforced.
 
void setCaseSensitiveSpecies (bool cflag=true)
 Set flag that determines whether case sensitive species are enforced in look-up operations, for example speciesIndex.
 
vector< double > getCompositionFromMap (const Composition &comp) const
 Converts a Composition to a vector with entries for each species Species that are not specified are set to zero in the vector.
 
void massFractionsToMoleFractions (const double *Y, double *X) const
 Converts a mixture composition from mole fractions to mass fractions.
 
void moleFractionsToMassFractions (const double *X, double *Y) const
 Converts a mixture composition from mass fractions to mole fractions.
 
string name () const
 Return the name of the phase.
 
void setName (const string &nm)
 Sets the string name for the phase.
 
string elementName (size_t m) const
 Name of the element with index m.
 
size_t elementIndex (const string &name) const
 Return the index of element named 'name'.
 
const vector< string > & elementNames () const
 Return a read-only reference to the vector of element names.
 
double atomicWeight (size_t m) const
 Atomic weight of element m.
 
double entropyElement298 (size_t m) const
 Entropy of the element in its standard state at 298 K and 1 bar.
 
int atomicNumber (size_t m) const
 Atomic number of element m.
 
int elementType (size_t m) const
 Return the element constraint type Possible types include:
 
int changeElementType (int m, int elem_type)
 Change the element type of the mth constraint Reassigns an element type.
 
const vector< double > & atomicWeights () const
 Return a read-only reference to the vector of atomic weights.
 
size_t nElements () const
 Number of elements.
 
void checkElementIndex (size_t m) const
 Check that the specified element index is in range.
 
void checkElementArraySize (size_t mm) const
 Check that an array size is at least nElements().
 
double nAtoms (size_t k, size_t m) const
 Number of atoms of element m in species k.
 
size_t speciesIndex (const string &name) const
 Returns the index of a species named 'name' within the Phase object.
 
string speciesName (size_t k) const
 Name of the species with index k.
 
const vector< string > & speciesNames () const
 Return a const reference to the vector of species names.
 
size_t nSpecies () const
 Returns the number of species in the phase.
 
void checkSpeciesIndex (size_t k) const
 Check that the specified species index is in range.
 
void checkSpeciesArraySize (size_t kk) const
 Check that an array size is at least nSpecies().
 
void setMoleFractionsByName (const Composition &xMap)
 Set the species mole fractions by name.
 
void setMoleFractionsByName (const string &x)
 Set the mole fractions of a group of species by name.
 
void setMassFractionsByName (const Composition &yMap)
 Set the species mass fractions by name.
 
void setMassFractionsByName (const string &x)
 Set the species mass fractions by name.
 
void setState_TD (double t, double rho)
 Set the internally stored temperature (K) and density (kg/m^3)
 
Composition getMoleFractionsByName (double threshold=0.0) const
 Get the mole fractions by name.
 
double moleFraction (size_t k) const
 Return the mole fraction of a single species.
 
double moleFraction (const string &name) const
 Return the mole fraction of a single species.
 
Composition getMassFractionsByName (double threshold=0.0) const
 Get the mass fractions by name.
 
double massFraction (size_t k) const
 Return the mass fraction of a single species.
 
double massFraction (const string &name) const
 Return the mass fraction of a single species.
 
void getMoleFractions (double *const x) const
 Get the species mole fraction vector.
 
virtual void setMoleFractions (const double *const x)
 Set the mole fractions to the specified values.
 
virtual void setMoleFractions_NoNorm (const double *const x)
 Set the mole fractions to the specified values without normalizing.
 
void getMassFractions (double *const y) const
 Get the species mass fractions.
 
const double * massFractions () const
 Return a const pointer to the mass fraction array.
 
virtual void setMassFractions (const double *const y)
 Set the mass fractions to the specified values and normalize them.
 
virtual void setMassFractions_NoNorm (const double *const y)
 Set the mass fractions to the specified values without normalizing.
 
virtual void getConcentrations (double *const c) const
 Get the species concentrations (kmol/m^3).
 
virtual double concentration (const size_t k) const
 Concentration of species k.
 
virtual void setConcentrations (const double *const conc)
 Set the concentrations to the specified values within the phase.
 
virtual void setConcentrationsNoNorm (const double *const conc)
 Set the concentrations without ignoring negative concentrations.
 
double temperature () const
 Temperature (K).
 
virtual double electronTemperature () const
 Electron Temperature (K)
 
virtual double density () const
 Density (kg/m^3).
 
virtual double molarDensity () const
 Molar density (kmol/m^3).
 
virtual void setDensity (const double density_)
 Set the internally stored density (kg/m^3) of the phase.
 
virtual void setTemperature (double temp)
 Set the internally stored temperature of the phase (K).
 
virtual void setElectronTemperature (double etemp)
 Set the internally stored electron temperature of the phase (K).
 
double mean_X (const double *const Q) const
 Evaluate the mole-fraction-weighted mean of an array Q.
 
double mean_X (const vector< double > &Q) const
 Evaluate the mole-fraction-weighted mean of an array Q.
 
double meanMolecularWeight () const
 The mean molecular weight. Units: (kg/kmol)
 
double sum_xlogx () const
 Evaluate \( \sum_k X_k \ln X_k \).
 
size_t addElement (const string &symbol, double weight=-12345.0, int atomicNumber=0, double entropy298=ENTROPY298_UNKNOWN, int elem_type=CT_ELEM_TYPE_ABSPOS)
 Add an element.
 
void addSpeciesAlias (const string &name, const string &alias)
 Add a species alias (that is, a user-defined alternative species name).
 
virtual vector< string > findIsomers (const Composition &compMap) const
 Return a vector with isomers names matching a given composition map.
 
virtual vector< string > findIsomers (const string &comp) const
 Return a vector with isomers names matching a given composition string.
 
shared_ptr< Speciesspecies (const string &name) const
 Return the Species object for the named species.
 
shared_ptr< Speciesspecies (size_t k) const
 Return the Species object for species whose index is k.
 
void ignoreUndefinedElements ()
 Set behavior when adding a species containing undefined elements to just skip the species.
 
void addUndefinedElements ()
 Set behavior when adding a species containing undefined elements to add those elements to the phase.
 
void throwUndefinedElements ()
 Set the behavior when adding a species containing undefined elements to throw an exception.
 

Protected Member Functions

void compositionChanged () override
 Apply changes to the state which are needed after the composition changes.
 
void _updateThermo (bool force=false) const
 Update the species reference state thermodynamic functions.
 
virtual void getParameters (AnyMap &phaseNode) const
 Store the parameters of a ThermoPhase object such that an identical one could be reconstructed using the newThermo(AnyMap&) function.
 
- Protected Member Functions inherited from Phase
void assertCompressible (const string &setter) const
 Ensure that phase is compressible.
 
void assignDensity (const double density_)
 Set the internally stored constant density (kg/m^3) of the phase.
 
void setMolecularWeight (const int k, const double mw)
 Set the molecular weight of a single species to a given value.
 
virtual void compositionChanged ()
 Apply changes to the state which are needed after the composition changes.
 

Protected Attributes

double m_n0 = 1.0
 Surface site density (kmol m-2)
 
vector< double > m_speciesSize
 Vector of species sizes (number of sites occupied). length m_kk.
 
double m_logn0
 log of the surface site density
 
double m_press = OneAtm
 Current value of the pressure (Pa)
 
vector< double > m_h0
 Temporary storage for the reference state enthalpies.
 
vector< double > m_s0
 Temporary storage for the reference state entropies.
 
vector< double > m_cp0
 Temporary storage for the reference state heat capacities.
 
vector< double > m_mu0
 Temporary storage for the reference state Gibbs energies.
 
vector< double > m_work
 Temporary work array.
 
vector< double > m_logsize
 vector storing the log of the size of each species.
 
- Protected Attributes inherited from ThermoPhase
MultiSpeciesThermo m_spthermo
 Pointer to the calculation manager for species reference-state thermodynamic properties.
 
AnyMap m_input
 Data supplied via setParameters.
 
double m_phi = 0.0
 Stored value of the electric potential for this phase. Units are Volts.
 
bool m_chargeNeutralityNecessary = false
 Boolean indicating whether a charge neutrality condition is a necessity.
 
int m_ssConvention = cSS_CONVENTION_TEMPERATURE
 Contains the standard state convention.
 
double m_tlast = 0.0
 last value of the temperature processed by reference state
 
- Protected Attributes inherited from Phase
ValueCache m_cache
 Cached for saved calculations within each ThermoPhase.
 
size_t m_kk = 0
 Number of species in the phase.
 
size_t m_ndim = 3
 Dimensionality of the phase.
 
vector< double > m_speciesComp
 Atomic composition of the species.
 
vector< double > m_speciesCharge
 Vector of species charges. length m_kk.
 
map< string, shared_ptr< Species > > m_species
 
UndefElement::behavior m_undefinedElementBehavior = UndefElement::add
 Flag determining behavior when adding species with an undefined element.
 
bool m_caseSensitiveSpecies = false
 Flag determining whether case sensitive species names are enforced.
 

Constructor & Destructor Documentation

◆ SurfPhase()

SurfPhase ( const string &  infile = "",
const string &  id = "" 
)
explicit

Construct and initialize a SurfPhase ThermoPhase object directly from an input file.

Parameters
infilename of the input file. If blank, an empty phase will be created.
idname of the phase id in the file. If this is blank, the first phase in the file is used.

Definition at line 22 of file SurfPhase.cpp.

Member Function Documentation

◆ type()

string type ( ) const
inlineoverridevirtual

String indicating the thermodynamic model implemented.

Usually corresponds to the name of the derived class, less any suffixes such as "Phase", TP", "VPSS", etc.

Since
Starting in Cantera 3.0, the name returned by this method corresponds to the canonical name used in the YAML input format.

Reimplemented from Phase.

Definition at line 109 of file SurfPhase.h.

◆ isCompressible()

bool isCompressible ( ) const
inlineoverridevirtual

Return whether phase represents a compressible substance.

Reimplemented from Phase.

Definition at line 113 of file SurfPhase.h.

◆ enthalpy_mole()

double enthalpy_mole ( ) const
overridevirtual

Return the Molar Enthalpy. Units: J/kmol.

For an ideal solution,

\[ \hat h(T,P) = \sum_k X_k \hat h^0_k(T), \]

and is a function only of temperature. The standard-state pure-species Enthalpies \( \hat h^0_k(T) \) are computed by the species thermodynamic property manager.

See also
MultiSpeciesThermo

Reimplemented from ThermoPhase.

Definition at line 28 of file SurfPhase.cpp.

◆ intEnergy_mole()

double intEnergy_mole ( ) const
overridevirtual

Return the Molar Internal Energy. Units: J/kmol.

For a surface phase, the pressure is not a relevant thermodynamic variable, and so the Enthalpy is equal to the Internal Energy.

Reimplemented from ThermoPhase.

Definition at line 37 of file SurfPhase.cpp.

◆ entropy_mole()

double entropy_mole ( ) const
overridevirtual

Return the Molar Entropy. Units: J/kmol-K.

\[ \hat s(T,P) = \sum_k X_k (\hat s^0_k(T) - R \ln \theta_k) \]

Reimplemented from ThermoPhase.

Definition at line 42 of file SurfPhase.cpp.

◆ cp_mole()

double cp_mole ( ) const
overridevirtual

Molar heat capacity at constant pressure. Units: J/kmol/K.

Reimplemented from ThermoPhase.

Definition at line 53 of file SurfPhase.cpp.

◆ cv_mole()

double cv_mole ( ) const
overridevirtual

Molar heat capacity at constant volume. Units: J/kmol/K.

Reimplemented from ThermoPhase.

Definition at line 59 of file SurfPhase.cpp.

◆ getChemPotentials()

void getChemPotentials ( double *  mu) const
overridevirtual

Get the species chemical potentials. Units: J/kmol.

This function returns a vector of chemical potentials of the species in solution at the current temperature, pressure and mole fraction of the solution.

Parameters
muOutput vector of species chemical potentials. Length: m_kk. Units: J/kmol

Reimplemented from ThermoPhase.

Definition at line 103 of file SurfPhase.cpp.

◆ getPartialMolarEnthalpies()

void getPartialMolarEnthalpies ( double *  hbar) const
overridevirtual

Returns an array of partial molar enthalpies for the species in the mixture.

Units (J/kmol)

Parameters
hbarOutput vector of species partial molar enthalpies. Length: m_kk. units are J/kmol.

Reimplemented from ThermoPhase.

Definition at line 64 of file SurfPhase.cpp.

◆ getPartialMolarEntropies()

void getPartialMolarEntropies ( double *  sbar) const
overridevirtual

Returns an array of partial molar entropies of the species in the solution.

Units: J/kmol/K.

Parameters
sbarOutput vector of species partial molar entropies. Length = m_kk. units are J/kmol/K.

Reimplemented from ThermoPhase.

Definition at line 72 of file SurfPhase.cpp.

◆ getPartialMolarCp()

void getPartialMolarCp ( double *  cpbar) const
overridevirtual

Return an array of partial molar heat capacities for the species in the mixture.

Units: J/kmol/K

Parameters
cpbarOutput vector of species partial molar heat capacities at constant pressure. Length = m_kk. units are J/kmol/K.

Reimplemented from ThermoPhase.

Definition at line 82 of file SurfPhase.cpp.

◆ getPartialMolarVolumes()

void getPartialMolarVolumes ( double *  vbar) const
overridevirtual

Return an array of partial molar volumes for the species in the mixture.

Units: m^3/kmol.

Parameters
vbarOutput vector of species partial molar volumes. Length = m_kk. units are m^3/kmol.

Reimplemented from ThermoPhase.

Definition at line 92 of file SurfPhase.cpp.

◆ getStandardChemPotentials()

void getStandardChemPotentials ( double *  mu) const
overridevirtual

Get the array of chemical potentials at unit activity for the species at their standard states at the current T and P of the solution.

These are the standard state chemical potentials \( \mu^0_k(T,P) \). The values are evaluated at the current temperature and pressure of the solution

Parameters
muOutput vector of chemical potentials. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 97 of file SurfPhase.cpp.

◆ getActivityConcentrations()

void getActivityConcentrations ( double *  c) const
overridevirtual

Return a vector of activity concentrations for each species.

For this phase the activity concentrations, \( C^a_k \), are defined to be equal to the actual concentrations, \( C^s_k \). Activity concentrations are

\[ C^a_k = C^s_k = \frac{\theta_k n_0}{s_k} \]

where \( \theta_k \) is the surface site fraction for species k, \( n_0 \) is the surface site density for the phase, and \( s_k \) is the surface size of species k.

\( C^a_k \) that are defined such that \( a_k = C^a_k / C^0_k, \) where \( C^0_k \) is a standard concentration defined below and \( a_k \) are activities used in the thermodynamic functions. These activity concentrations are used by kinetics manager classes to compute the forward and reverse rates of elementary reactions. Note that they may or may not have units of concentration — they might be partial pressures, mole fractions, or surface coverages,

Parameters
cvector of activity concentration (kmol m-2).

Reimplemented from ThermoPhase.

Definition at line 113 of file SurfPhase.cpp.

◆ standardConcentration()

double standardConcentration ( size_t  k = 0) const
overridevirtual

Return the standard concentration for the kth species.

The standard concentration \( C^0_k \) used to normalize the activity (that is, generalized) concentration. For this phase, the standard concentration is species- specific

\[ C^0_k = \frac{n_0}{s_k} \]

This definition implies that the activity is equal to \( \theta_k \).

Parameters
kOptional parameter indicating the species. The default is to assume this refers to species 0.
Returns
the standard concentration in units of kmol/m^2 for surface phases or kmol/m for edge phases.

Reimplemented from ThermoPhase.

Definition at line 118 of file SurfPhase.cpp.

◆ logStandardConc()

double logStandardConc ( size_t  k = 0) const
overridevirtual

Natural logarithm of the standard concentration of the kth species.

Parameters
kindex of the species (defaults to zero)

Reimplemented from ThermoPhase.

Definition at line 123 of file SurfPhase.cpp.

◆ initThermo()

void initThermo ( )
overridevirtual

Initialize the ThermoPhase object after all species have been set up.

This method is provided to allow subclasses to perform any initialization required after all species have been added. For example, it might be used to resize internal work arrays that must have an entry for each species. The base class implementation does nothing, and subclasses that do not require initialization do not need to overload this method. Derived classes which do override this function should call their parent class's implementation of this function as their last action.

When importing from an AnyMap phase description (or from a YAML file), setupPhase() adds all the species, stores the input data in m_input, and then calls this method to set model parameters from the data stored in m_input.

Reimplemented from ThermoPhase.

Definition at line 319 of file SurfPhase.cpp.

◆ getParameters()

void getParameters ( AnyMap phaseNode) const
overridevirtual

Store the parameters of a ThermoPhase object such that an identical one could be reconstructed using the newThermo(AnyMap&) function.

This does not include user-defined fields available in input().

Reimplemented from ThermoPhase.

Definition at line 328 of file SurfPhase.cpp.

◆ addSpecies()

bool addSpecies ( shared_ptr< Species spec)
overridevirtual

Add a Species to this Phase.

Returns true if the species was successfully added, or false if the species was ignored.

Derived classes which need to size arrays according to the number of species should overload this method. The derived class implementation should call the base class method, and, if this returns true (indicating that the species has been added), adjust their array sizes accordingly.

See also
ignoreUndefinedElements addUndefinedElements throwUndefinedElements

Reimplemented from Phase.

Definition at line 185 of file SurfPhase.cpp.

◆ molarVolume()

double molarVolume ( ) const
inlineoverridevirtual

Since interface phases have no volume, this returns 0.0.

Reimplemented from Phase.

Definition at line 208 of file SurfPhase.h.

◆ siteDensity()

double siteDensity ( ) const
inline

Returns the site density.

Site density kmol m-2

Definition at line 216 of file SurfPhase.h.

◆ size()

double size ( size_t  k) const
inline

Returns the number of sites occupied by one molecule of species k.

Definition at line 221 of file SurfPhase.h.

◆ setSiteDensity()

void setSiteDensity ( double  n0)

Set the site density of the surface phase (kmol m-2)

Parameters
n0Site density of the surface phase (kmol m-2)

Definition at line 204 of file SurfPhase.cpp.

◆ getGibbs_RT()

void getGibbs_RT ( double *  grt) const
overridevirtual

Get the nondimensional Gibbs functions for the species in their standard states at the current T and P of the solution.

Parameters
grtOutput vector of nondimensional standard state Gibbs free energies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 134 of file SurfPhase.cpp.

◆ getEnthalpy_RT()

void getEnthalpy_RT ( double *  hrt) const
overridevirtual

Get the nondimensional Enthalpy functions for the species at their standard states at the current T and P of the solution.

Parameters
hrtOutput vector of nondimensional standard state enthalpies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 140 of file SurfPhase.cpp.

◆ getEntropy_R()

void getEntropy_R ( double *  sr) const
overridevirtual

Get the array of nondimensional Entropy functions for the standard state species at the current T and P of the solution.

Parameters
srOutput vector of nondimensional standard state entropies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 146 of file SurfPhase.cpp.

◆ getCp_R()

void getCp_R ( double *  cpr) const
overridevirtual

Get the nondimensional Heat Capacities at constant pressure for the species standard states at the current T and P of the solution.

Parameters
cprOutput vector of nondimensional standard state heat capacities. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 152 of file SurfPhase.cpp.

◆ getStandardVolumes()

void getStandardVolumes ( double *  vol) const
overridevirtual

Get the molar volumes of the species standard states at the current T and P of the solution.

units = m^3 / kmol

Parameters
volOutput vector containing the standard state volumes. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 158 of file SurfPhase.cpp.

◆ pressure()

double pressure ( ) const
inlineoverridevirtual

Return the thermodynamic pressure (Pa).

Reimplemented from Phase.

Definition at line 238 of file SurfPhase.h.

◆ setPressure()

void setPressure ( double  p)
inlineoverridevirtual

Set the internally stored pressure (Pa) at constant temperature and composition.

Parameters
pinput Pressure (Pa)

Reimplemented from Phase.

Definition at line 247 of file SurfPhase.h.

◆ getPureGibbs()

void getPureGibbs ( double *  gpure) const
overridevirtual

Get the Gibbs functions for the standard state of the species at the current T and P of the solution.

Units are Joules/kmol

Parameters
gpureOutput vector of standard state Gibbs free energies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 128 of file SurfPhase.cpp.

◆ getGibbs_RT_ref()

void getGibbs_RT_ref ( double *  grt) const
overridevirtual

Returns the vector of nondimensional Gibbs Free Energies of the reference state at the current temperature of the solution and the reference pressure for the species.

Parameters
grtOutput vector containing the nondimensional reference state Gibbs Free energies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 165 of file SurfPhase.cpp.

◆ getEnthalpy_RT_ref()

void getEnthalpy_RT_ref ( double *  hrt) const
overridevirtual

Returns the vector of nondimensional enthalpies of the reference state at the current temperature of the solution and the reference pressure for the species.

Parameters
hrtOutput vector containing the nondimensional reference state enthalpies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 170 of file SurfPhase.cpp.

◆ getEntropy_R_ref()

void getEntropy_R_ref ( double *  er) const
overridevirtual

Returns the vector of nondimensional entropies of the reference state at the current temperature of the solution and the reference pressure for each species.

Parameters
erOutput vector containing the nondimensional reference state entropies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 175 of file SurfPhase.cpp.

◆ getCp_R_ref()

void getCp_R_ref ( double *  cprt) const
overridevirtual

Returns the vector of nondimensional constant pressure heat capacities of the reference state at the current temperature of the solution and reference pressure for each species.

Parameters
cprtOutput vector of nondimensional reference state heat capacities at constant pressure for the species. Length: m_kk

Reimplemented from ThermoPhase.

Definition at line 180 of file SurfPhase.cpp.

◆ setCoverages()

void setCoverages ( const double *  theta)

Set the surface site fractions to a specified state.

This routine converts to concentrations in kmol/m2, using m_n0, the surface site density, and size(k), which is defined to be the number of surface sites occupied by the kth molecule. It then calls Phase::setConcentrations to set the internal concentration in the object.

Parameters
thetaThis is the surface site fraction for the kth species in the surface phase. This is a dimensionless quantity.

This routine normalizes the theta's to 1, before application

Definition at line 215 of file SurfPhase.cpp.

◆ setCoveragesNoNorm()

void setCoveragesNoNorm ( const double *  theta)

Set the surface site fractions to a specified state.

This routine converts to concentrations in kmol/m2, using m_n0, the surface site density, and size(k), which is defined to be the number of surface sites occupied by the kth molecule. It then calls Phase::setConcentrations to set the internal concentration in the object.

Parameters
thetaThis is the surface site fraction for the kth species in the surface phase. This is a dimensionless quantity.

Definition at line 231 of file SurfPhase.cpp.

◆ setCoveragesByName() [1/2]

void setCoveragesByName ( const string &  cov)

Set the coverages from a string of colon-separated name:value pairs.

Parameters
covString containing colon-separated name:value pairs

Definition at line 263 of file SurfPhase.cpp.

◆ setCoveragesByName() [2/2]

void setCoveragesByName ( const Composition cov)

Set the coverages from a map of name:value pairs.

Definition at line 268 of file SurfPhase.cpp.

◆ getCoverages()

void getCoverages ( double *  theta) const

Return a vector of surface coverages.

Get the coverages.

Parameters
thetaArray theta must be at least as long as the number of species.

Definition at line 249 of file SurfPhase.cpp.

◆ setState()

void setState ( const AnyMap state)
overridevirtual

Set the state using an AnyMap containing any combination of properties supported by the thermodynamic model.

Accepted keys are:

  • X (mole fractions)
  • Y (mass fractions)
  • T or temperature
  • P or pressure [Pa]
  • H or enthalpy [J/kg]
  • U or internal-energy [J/kg]
  • S or entropy [J/kg/K]
  • V or specific-volume [m^3/kg]
  • D or density [kg/m^3]

Composition can be specified as either an AnyMap of species names to values or as a composition string. All other values can be given as floating point values in Cantera's default units, or as strings with the units specified, which will be converted using the Units class.

If no thermodynamic property pair is given, or only one of temperature or pressure is given, then 298.15 K and 101325 Pa will be used as necessary to fully set the state.

Additionally uses the key coverages to set the fractional coverages.

Reimplemented from ThermoPhase.

Definition at line 286 of file SurfPhase.cpp.

◆ compositionChanged()

void compositionChanged ( )
overrideprotectedvirtual

Apply changes to the state which are needed after the composition changes.

This function is called after any call to setMassFractions(), setMoleFractions(), or similar. For phases which need to execute a callback after any change to the composition, it should be done by overriding this function rather than overriding all of the composition- setting functions. Derived class implementations of compositionChanged() should call the parent class method as well.

Reimplemented from Phase.

Definition at line 297 of file SurfPhase.cpp.

◆ _updateThermo()

void _updateThermo ( bool  force = false) const
protected

Update the species reference state thermodynamic functions.

The polynomials for the standard state functions are only reevaluated if the temperature has changed.

Parameters
forceBoolean, which if true, forces a reevaluation of the thermo polynomials. default = false.

Definition at line 303 of file SurfPhase.cpp.

Member Data Documentation

◆ m_n0

double m_n0 = 1.0
protected

Surface site density (kmol m-2)

Definition at line 311 of file SurfPhase.h.

◆ m_speciesSize

vector<double> m_speciesSize
protected

Vector of species sizes (number of sites occupied). length m_kk.

Definition at line 314 of file SurfPhase.h.

◆ m_logn0

double m_logn0
protected

log of the surface site density

Definition at line 317 of file SurfPhase.h.

◆ m_press

double m_press = OneAtm
protected

Current value of the pressure (Pa)

Definition at line 320 of file SurfPhase.h.

◆ m_h0

vector<double> m_h0
mutableprotected

Temporary storage for the reference state enthalpies.

Definition at line 323 of file SurfPhase.h.

◆ m_s0

vector<double> m_s0
mutableprotected

Temporary storage for the reference state entropies.

Definition at line 326 of file SurfPhase.h.

◆ m_cp0

vector<double> m_cp0
mutableprotected

Temporary storage for the reference state heat capacities.

Definition at line 329 of file SurfPhase.h.

◆ m_mu0

vector<double> m_mu0
mutableprotected

Temporary storage for the reference state Gibbs energies.

Definition at line 332 of file SurfPhase.h.

◆ m_work

vector<double> m_work
mutableprotected

Temporary work array.

Definition at line 335 of file SurfPhase.h.

◆ m_logsize

vector<double> m_logsize
mutableprotected

vector storing the log of the size of each species.

The size of each species is defined as the number of surface sites each species occupies.

Definition at line 342 of file SurfPhase.h.


The documentation for this class was generated from the following files: