Cantera  3.1.0a1
Loading...
Searching...
No Matches
IdealSolidSolnPhase.cpp
Go to the documentation of this file.
1/**
2 * @file IdealSolidSolnPhase.cpp Implementation file for an ideal solid
3 * solution model with incompressible thermodynamics (see @ref
4 * thermoprops and @link Cantera::IdealSolidSolnPhase
5 * IdealSolidSolnPhase@endlink).
6 */
7
8// This file is part of Cantera. See License.txt in the top-level directory or
9// at https://cantera.org/license.txt for license and copyright information.
10
16
17namespace Cantera
18{
19
20IdealSolidSolnPhase::IdealSolidSolnPhase(const string& inputFile, const string& id_)
21{
22 initThermoFile(inputFile, id_);
23}
24
25// Molar Thermodynamic Properties of the Solution
26
28{
29 double htp = RT() * mean_X(enthalpy_RT_ref());
30 return htp + (pressure() - m_Pref)/molarDensity();
31}
32
34{
35 return GasConstant * (mean_X(entropy_R_ref()) - sum_xlogx());
36}
37
39{
40 double Pv = (pressure() - m_Pref)/molarDensity();
41 return RT() * (mean_X(gibbs_RT_ref()) + sum_xlogx()) + Pv;
42}
43
45{
46 return GasConstant * mean_X(cp_R_ref());
47}
48
49// Mechanical Equation of State
50
52{
53 // Calculate the molarVolume of the solution (m**3 kmol-1)
54 double v_mol = mean_X(m_speciesMolarVolume);
55
56 // Set the density in the parent object directly, by calling the
57 // Phase::assignDensity() function.
59}
60
62{
63 m_Pcurrent = p;
65}
66
68{
71}
72
73// Chemical Potentials and Activities
74
76{
77 if (m_formGC == 0) {
78 return Units(1.0); // dimensionless
79 } else {
80 // kmol/m^3 for bulk phases
81 return Units(1.0, 0, -static_cast<double>(nDim()), 0, 0, 0, 1);
82 }
83}
84
86{
88 switch (m_formGC) {
89 case 0:
90 break;
91 case 1:
92 for (size_t k = 0; k < m_kk; k++) {
93 c[k] /= m_speciesMolarVolume[k];
94 }
95 break;
96 case 2:
97 for (size_t k = 0; k < m_kk; k++) {
98 c[k] /= m_speciesMolarVolume[m_kk-1];
99 }
100 break;
101 }
102}
103
105{
106 switch (m_formGC) {
107 case 0:
108 return 1.0;
109 case 1:
110 return 1.0 / m_speciesMolarVolume[k];
111 case 2:
112 return 1.0/m_speciesMolarVolume[m_kk-1];
113 }
114 return 0.0;
115}
116
118{
119 for (size_t k = 0; k < m_kk; k++) {
120 ac[k] = 1.0;
121 }
122}
123
125{
126 double delta_p = m_Pcurrent - m_Pref;
127 const vector<double>& g_RT = gibbs_RT_ref();
128 for (size_t k = 0; k < m_kk; k++) {
129 double xx = std::max(SmallNumber, moleFraction(k));
130 mu[k] = RT() * (g_RT[k] + log(xx))
131 + delta_p * m_speciesMolarVolume[k];
132 }
133}
134
135// Partial Molar Properties
136
138{
139 const vector<double>& _h = enthalpy_RT_ref();
140 double delta_p = m_Pcurrent - m_Pref;
141 for (size_t k = 0; k < m_kk; k++) {
142 hbar[k] = _h[k]*RT() + delta_p * m_speciesMolarVolume[k];
143 }
144 // scale(_h.begin(), _h.end(), hbar, RT());
145}
146
148{
149 const vector<double>& _s = entropy_R_ref();
150 for (size_t k = 0; k < m_kk; k++) {
151 double xx = std::max(SmallNumber, moleFraction(k));
152 sbar[k] = GasConstant * (_s[k] - log(xx));
153 }
154}
155
157{
158 getCp_R(cpbar);
159 for (size_t k = 0; k < m_kk; k++) {
160 cpbar[k] *= GasConstant;
161 }
162}
163
165{
166 getStandardVolumes(vbar);
167}
168
169// Properties of the Standard State of the Species in the Solution
170
171void IdealSolidSolnPhase::getPureGibbs(double* gpure) const
172{
173 const vector<double>& gibbsrt = gibbs_RT_ref();
174 double delta_p = (m_Pcurrent - m_Pref);
175 for (size_t k = 0; k < m_kk; k++) {
176 gpure[k] = RT() * gibbsrt[k] + delta_p * m_speciesMolarVolume[k];
177 }
178}
179
180void IdealSolidSolnPhase::getGibbs_RT(double* grt) const
181{
182 const vector<double>& gibbsrt = gibbs_RT_ref();
183 double delta_prt = (m_Pcurrent - m_Pref)/ RT();
184 for (size_t k = 0; k < m_kk; k++) {
185 grt[k] = gibbsrt[k] + delta_prt * m_speciesMolarVolume[k];
186 }
187}
188
190{
191 const vector<double>& _h = enthalpy_RT_ref();
192 double delta_prt = (m_Pcurrent - m_Pref) / RT();
193 for (size_t k = 0; k < m_kk; k++) {
194 hrt[k] = _h[k] + delta_prt * m_speciesMolarVolume[k];
195 }
196}
197
199{
200 const vector<double>& _s = entropy_R_ref();
201 copy(_s.begin(), _s.end(), sr);
202}
203
205{
206 const vector<double>& _h = enthalpy_RT_ref();
207 double prefrt = m_Pref / RT();
208 for (size_t k = 0; k < m_kk; k++) {
209 urt[k] = _h[k] - prefrt * m_speciesMolarVolume[k];
210 }
211}
212
213void IdealSolidSolnPhase::getCp_R(double* cpr) const
214{
215 const vector<double>& _cpr = cp_R_ref();
216 copy(_cpr.begin(), _cpr.end(), cpr);
217}
218
220{
221 copy(m_speciesMolarVolume.begin(), m_speciesMolarVolume.end(), vol);
222}
223
224// Thermodynamic Values for the Species Reference States
225
227{
229 for (size_t k = 0; k != m_kk; k++) {
230 hrt[k] = m_h0_RT[k];
231 }
232}
233
235{
237 for (size_t k = 0; k != m_kk; k++) {
238 grt[k] = m_g0_RT[k];
239 }
240}
241
243{
245 double tmp = RT();
246 for (size_t k = 0; k != m_kk; k++) {
247 g[k] = tmp * m_g0_RT[k];
248 }
249}
250
252{
253 const vector<double>& _h = enthalpy_RT_ref();
254 double prefrt = m_Pref / RT();
255 for (size_t k = 0; k < m_kk; k++) {
256 urt[k] = _h[k] - prefrt * m_speciesMolarVolume[k];
257 }
258}
259
261{
263 for (size_t k = 0; k != m_kk; k++) {
264 er[k] = m_s0_R[k];
265 }
266}
267
268void IdealSolidSolnPhase::getCp_R_ref(double* cpr) const
269{
271 for (size_t k = 0; k != m_kk; k++) {
272 cpr[k] = m_cp0_R[k];
273 }
274}
275
276const vector<double>& IdealSolidSolnPhase::enthalpy_RT_ref() const
277{
279 return m_h0_RT;
280}
281
282const vector<double>& IdealSolidSolnPhase::entropy_R_ref() const
283{
285 return m_s0_R;
286}
287
288// Utility Functions
289
290bool IdealSolidSolnPhase::addSpecies(shared_ptr<Species> spec)
291{
292 bool added = ThermoPhase::addSpecies(spec);
293 if (added) {
294 if (m_kk == 1) {
295 // Obtain the reference pressure by calling the ThermoPhase function
296 // refPressure, which in turn calls the species thermo reference
297 // pressure function of the same name.
299 }
300
301 m_h0_RT.push_back(0.0);
302 m_g0_RT.push_back(0.0);
303 m_expg0_RT.push_back(0.0);
304 m_cp0_R.push_back(0.0);
305 m_s0_R.push_back(0.0);
306 m_pp.push_back(0.0);
307 if (spec->input.hasKey("equation-of-state")) {
308 auto& eos = spec->input["equation-of-state"].getMapWhere("model", "constant-volume");
309 double mv;
310 if (eos.hasKey("density")) {
311 mv = molecularWeight(m_kk-1) / eos.convert("density", "kg/m^3");
312 } else if (eos.hasKey("molar-density")) {
313 mv = 1.0 / eos.convert("molar-density", "kmol/m^3");
314 } else if (eos.hasKey("molar-volume")) {
315 mv = eos.convert("molar-volume", "m^3/kmol");
316 } else {
317 throw CanteraError("IdealSolidSolnPhase::addSpecies",
318 "equation-of-state entry for species '{}' is missing "
319 "'density', 'molar-volume', or 'molar-density' "
320 "specification", spec->name);
321 }
322 m_speciesMolarVolume.push_back(mv);
323 } else {
324 throw CanteraError("IdealSolidSolnPhase::addSpecies",
325 "Molar volume not specified for species '{}'", spec->name);
326 }
327 if (ready()) {
328 calcDensity();
329 }
330 }
331 return added;
332}
333
335{
336 if (m_input.hasKey("standard-concentration-basis")) {
337 setStandardConcentrationModel(m_input["standard-concentration-basis"].asString());
338 }
340}
341
343{
345 if (m_formGC == 1) {
346 phaseNode["standard-concentration-basis"] = "species-molar-volume";
347 } else if (m_formGC == 2) {
348 phaseNode["standard-concentration-basis"] = "solvent-molar-volume";
349 }
350}
351
353 AnyMap& speciesNode) const
354{
356 size_t k = speciesIndex(name);
357 const auto S = species(k);
358 auto& eosNode = speciesNode["equation-of-state"].getMapWhere(
359 "model", "constant-volume", true);
360 // Output volume information in a form consistent with the input
361 if (S->input.hasKey("equation-of-state")) {
362 auto& eosIn = S->input["equation-of-state"];
363 if (eosIn.hasKey("density")) {
364 eosNode["density"].setQuantity(
365 molecularWeight(k) / m_speciesMolarVolume[k], "kg/m^3");
366 } else if (eosIn.hasKey("molar-density")) {
367 eosNode["molar-density"].setQuantity(1.0 / m_speciesMolarVolume[k],
368 "kmol/m^3");
369 } else {
370 eosNode["molar-volume"].setQuantity(m_speciesMolarVolume[k],
371 "m^3/kmol");
372 }
373 } else {
374 eosNode["molar-volume"].setQuantity(m_speciesMolarVolume[k],
375 "m^3/kmol");
376 }
377}
378
380{
381 const vector<double>& grt = gibbs_RT_ref();
382
383 // Within the method, we protect against inf results if the exponent is too
384 // high.
385 //
386 // If it is too low, we set the partial pressure to zero. This capability is
387 // needed by the elemental potential method.
388 double pres = 0.0;
389 double m_p0 = refPressure();
390 for (size_t k = 0; k < m_kk; k++) {
391 double tmp = -grt[k] + mu_RT[k];
392 if (tmp < -600.) {
393 m_pp[k] = 0.0;
394 } else if (tmp > 500.0) {
395 // Protect against inf results if the exponent is too high
396 double tmp2 = tmp / 500.;
397 tmp2 *= tmp2;
398 m_pp[k] = m_p0 * exp(500.) * tmp2;
399 } else {
400 m_pp[k] = m_p0 * exp(tmp);
401 }
402 pres += m_pp[k];
403 }
404 // set state
405 setMoleFractions(m_pp.data());
406 setPressure(pres);
407}
408
410{
411 if (caseInsensitiveEquals(model, "unity")) {
412 m_formGC = 0;
413 } else if (caseInsensitiveEquals(model, "species-molar-volume")
414 || caseInsensitiveEquals(model, "molar_volume")) {
415 m_formGC = 1;
416 } else if (caseInsensitiveEquals(model, "solvent-molar-volume")
417 || caseInsensitiveEquals(model, "solvent_volume")) {
418 m_formGC = 2;
419 } else {
420 throw CanteraError("IdealSolidSolnPhase::setStandardConcentrationModel",
421 "Unknown standard concentration model '{}'", model);
422 }
423}
424
426{
427 return m_speciesMolarVolume[k];
428}
429
431{
432 copy(m_speciesMolarVolume.begin(), m_speciesMolarVolume.end(), smv);
433}
434
436{
437 double tnow = temperature();
438 if (m_tlast != tnow) {
439
440 // Update the thermodynamic functions of the reference state.
441 m_spthermo.update(tnow, m_cp0_R.data(), m_h0_RT.data(), m_s0_R.data());
442 m_tlast = tnow;
443 for (size_t k = 0; k < m_kk; k++) {
444 m_g0_RT[k] = m_h0_RT[k] - m_s0_R[k];
445 }
446 m_tlast = tnow;
447 }
448}
449
450} // end namespace Cantera
Header file for an ideal solid solution model with incompressible thermodynamics (see Thermodynamic P...
Declaration for class Cantera::Species.
Headers for the factory class that can create known ThermoPhase objects (see Thermodynamic Properties...
A map of string keys to values whose type can vary at runtime.
Definition AnyMap.h:427
bool hasKey(const string &key) const
Returns true if the map contains an item named key.
Definition AnyMap.cpp:1423
Base class for exceptions thrown by Cantera classes.
const vector< double > & entropy_R_ref() const
Returns a reference to the vector of nondimensional enthalpies of the reference state at the current ...
double enthalpy_mole() const override
Molar enthalpy of the solution.
void getPartialMolarEnthalpies(double *hbar) const override
Returns an array of partial molar enthalpies for the species in the mixture.
void getChemPotentials(double *mu) const override
Get the species chemical potentials.
double pressure() const override
Pressure.
vector< double > m_g0_RT
Vector containing the species reference Gibbs functions at T = m_tlast.
void getSpeciesParameters(const string &name, AnyMap &speciesNode) const override
Get phase-specific parameters of a Species object such that an identical one could be reconstructed a...
void getEntropy_R(double *sr) const override
Get the nondimensional Entropies for the species standard states at the current T and P of the soluti...
vector< double > m_h0_RT
Vector containing the species reference enthalpies at T = m_tlast.
void getGibbs_ref(double *g) const override
Returns the vector of the Gibbs function of the reference state at the current temperature of the sol...
double speciesMolarVolume(int k) const
Report the molar volume of species k.
vector< double > m_pp
Temporary array used in equilibrium calculations.
double m_Pref
Value of the reference pressure for all species in this phase.
void getCp_R(double *cpr) const override
Get the nondimensional heat capacity at constant pressure function for the species standard states at...
void getParameters(AnyMap &phaseNode) const override
Store the parameters of a ThermoPhase object such that an identical one could be reconstructed using ...
void initThermo() override
Initialize the ThermoPhase object after all species have been set up.
void getActivityConcentrations(double *c) const override
This method returns the array of generalized concentrations.
void getSpeciesMolarVolumes(double *smv) const
Fill in a return vector containing the species molar volumes.
void setPressure(double p) override
Set the pressure at constant temperature.
const vector< double > & gibbs_RT_ref() const
Returns a reference to the vector of nondimensional enthalpies of the reference state at the current ...
void getPartialMolarVolumes(double *vbar) const override
returns an array of partial molar volumes of the species in the solution.
void getPureGibbs(double *gpure) const override
Get the Gibbs functions for the pure species at the current T and P of the solution.
double standardConcentration(size_t k) const override
The standard concentration used to normalize the generalized concentration.
void setStandardConcentrationModel(const string &model)
Set the form for the standard and generalized concentrations.
void getIntEnergy_RT_ref(double *urt) const override
Returns the vector of nondimensional internal Energies of the reference state at the current temperat...
void getEnthalpy_RT(double *hrt) const override
Get the array of nondimensional Enthalpy functions for the standard state species at the current T an...
void getEntropy_R_ref(double *er) const override
Returns the vector of nondimensional entropies of the reference state at the current temperature of t...
vector< double > m_s0_R
Vector containing the species reference entropies at T = m_tlast.
void getGibbs_RT(double *grt) const override
Get the nondimensional Gibbs function for the species standard states at the current T and P of the s...
double entropy_mole() const override
Molar entropy of the solution.
int m_formGC
The standard concentrations can have one of three different forms: 0 = 'unity', 1 = 'species-molar-vo...
vector< double > m_speciesMolarVolume
Vector of molar volumes for each species in the solution.
void getCp_R_ref(double *cprt) const override
Returns the vector of nondimensional constant pressure heat capacities of the reference state at the ...
void getStandardVolumes(double *vol) const override
Get the molar volumes of the species standard states at the current T and P of the solution.
double cp_mole() const override
Molar heat capacity at constant pressure of the solution.
void getIntEnergy_RT(double *urt) const override
Returns the vector of nondimensional Internal Energies of the standard state species at the current T...
Units standardConcentrationUnits() const override
Returns the units of the "standard concentration" for this phase.
IdealSolidSolnPhase(const string &infile="", const string &id="")
Construct and initialize an IdealSolidSolnPhase ThermoPhase object directly from an input file.
void getPartialMolarCp(double *cpbar) const override
Returns an array of partial molar Heat Capacities at constant pressure of the species in the solution...
void compositionChanged() override
Apply changes to the state which are needed after the composition changes.
double gibbs_mole() const override
Molar Gibbs free energy of the solution.
vector< double > m_cp0_R
Vector containing the species reference constant pressure heat capacities at T = m_tlast.
bool addSpecies(shared_ptr< Species > spec) override
Add a Species to this Phase.
virtual void _updateThermo() const
This function gets called for every call to functions in this class.
void setToEquilState(const double *mu_RT) override
This method is used by the ChemEquil equilibrium solver.
void getGibbs_RT_ref(double *grt) const override
Returns the vector of nondimensional Gibbs Free Energies of the reference state at the current temper...
void getActivityCoefficients(double *ac) const override
Get the array of species activity coefficients.
vector< double > m_expg0_RT
Vector containing the species reference exp(-G/RT) functions at T = m_tlast.
void getPartialMolarEntropies(double *sbar) const override
Returns an array of partial molar entropies of the species in the solution.
const vector< double > & cp_R_ref() const
Returns a reference to the vector of nondimensional enthalpies of the reference state at the current ...
double m_Pcurrent
m_Pcurrent = The current pressure Since the density isn't a function of pressure, but only of the mol...
void getEnthalpy_RT_ref(double *hrt) const override
Returns the vector of nondimensional enthalpies of the reference state at the current temperature of ...
virtual void calcDensity()
Calculate the density of the mixture using the partial molar volumes and mole fractions as input.
const vector< double > & enthalpy_RT_ref() const
Returns a reference to the vector of nondimensional enthalpies of the reference state at the current ...
virtual void update(double T, double *cp_R, double *h_RT, double *s_R) const
Compute the reference-state properties for all species.
virtual double molarDensity() const
Molar density (kmol/m^3).
Definition Phase.cpp:576
void assignDensity(const double density_)
Set the internally stored constant density (kg/m^3) of the phase.
Definition Phase.cpp:597
virtual void setMoleFractions(const double *const x)
Set the mole fractions to the specified values.
Definition Phase.cpp:289
size_t m_kk
Number of species in the phase.
Definition Phase.h:842
size_t nDim() const
Returns the number of spatial dimensions (1, 2, or 3)
Definition Phase.h:546
double temperature() const
Temperature (K).
Definition Phase.h:562
double meanMolecularWeight() const
The mean molecular weight. Units: (kg/kmol)
Definition Phase.h:655
void getMoleFractions(double *const x) const
Get the species mole fraction vector.
Definition Phase.cpp:434
double sum_xlogx() const
Evaluate .
Definition Phase.cpp:626
size_t speciesIndex(const string &name) const
Returns the index of a species named 'name' within the Phase object.
Definition Phase.cpp:129
double moleFraction(size_t k) const
Return the mole fraction of a single species.
Definition Phase.cpp:439
virtual void compositionChanged()
Apply changes to the state which are needed after the composition changes.
Definition Phase.cpp:905
double mean_X(const double *const Q) const
Evaluate the mole-fraction-weighted mean of an array Q.
Definition Phase.cpp:616
virtual bool ready() const
Returns a bool indicating whether the object is ready for use.
Definition Phase.cpp:885
double molecularWeight(size_t k) const
Molecular weight of species k.
Definition Phase.cpp:383
shared_ptr< Species > species(const string &name) const
Return the Species object for the named species.
Definition Phase.cpp:856
string name() const
Return the name of the phase.
Definition Phase.cpp:20
virtual void getParameters(AnyMap &phaseNode) const
Store the parameters of a ThermoPhase object such that an identical one could be reconstructed using ...
double RT() const
Return the Gas Constant multiplied by the current temperature.
double m_tlast
last value of the temperature processed by reference state
virtual void initThermo()
Initialize the ThermoPhase object after all species have been set up.
void initThermoFile(const string &inputFile, const string &id)
Initialize a ThermoPhase object using an input file.
virtual void getSpeciesParameters(const string &name, AnyMap &speciesNode) const
Get phase-specific parameters of a Species object such that an identical one could be reconstructed a...
MultiSpeciesThermo m_spthermo
Pointer to the calculation manager for species reference-state thermodynamic properties.
virtual double refPressure() const
Returns the reference pressure in Pa.
bool addSpecies(shared_ptr< Species > spec) override
Add a Species to this Phase.
AnyMap m_input
Data supplied via setParameters.
A representation of the units associated with a dimensional quantity.
Definition Units.h:35
bool caseInsensitiveEquals(const string &input, const string &test)
Case insensitive equality predicate.
const double GasConstant
Universal Gas Constant [J/kmol/K].
Definition ct_defs.h:120
Namespace for the Cantera kernel.
Definition AnyMap.cpp:564
const double SmallNumber
smallest number to compare to zero.
Definition ct_defs.h:158
Contains declarations for string manipulation functions within Cantera.
Various templated functions that carry out common vector and polynomial operations (see Templated Arr...