Cantera  3.1.0a1
Loading...
Searching...
No Matches
Domain1D.h
Go to the documentation of this file.
1 //! @file Domain1D.h
2
3// This file is part of Cantera. See License.txt in the top-level directory or
4// at https://cantera.org/license.txt for license and copyright information.
5
6#ifndef CT_DOMAIN1D_H
7#define CT_DOMAIN1D_H
8
10
11namespace Cantera
12{
13
14class MultiJac;
15class OneDim;
16class Refiner;
17class AnyMap;
18class Kinetics;
19class Transport;
20class Solution;
21class SolutionArray;
22
23/**
24 * Base class for one-dimensional domains.
25 * @ingroup flowGroup
26 */
28{
29public:
30 /**
31 * Constructor.
32 * @param nv Number of variables at each grid point.
33 * @param points Number of grid points.
34 * @param time (unused)
35 */
36 Domain1D(size_t nv=1, size_t points=1, double time=0.0);
37
38 virtual ~Domain1D();
39 Domain1D(const Domain1D&) = delete;
40 Domain1D& operator=(const Domain1D&) = delete;
41
42 //! Domain type flag.
43 //! @since Starting in %Cantera 3.1, the return type is a `string`.
44 virtual string domainType() const { return "domain"; }
45
46 //! String indicating the domain implemented.
47 //! @since New in %Cantera 3.0.
48 //! @deprecated Transitional method. Use domainType() instead.
49 string type() const { return domainType(); }
50
51 //! The left-to-right location of this domain.
52 size_t domainIndex() {
53 return m_index;
54 }
55
56 //! True if the domain is a connector domain.
57 virtual bool isConnector() {
58 return false;
59 }
60
61 //! Set the solution manager.
62 //! @since New in %Cantera 3.0.
63 void setSolution(shared_ptr<Solution> sol) {
64 m_solution = sol;
65 }
66
67 //! Set the kinetics manager.
68 //! @since New in %Cantera 3.0.
69 virtual void setKinetics(shared_ptr<Kinetics> kin) {
70 throw NotImplementedError("Domain1D::setKinetics");
71 }
72
73 //! Set transport model to existing instance
74 //! @since New in %Cantera 3.0.
75 virtual void setTransport(shared_ptr<Transport> trans) {
76 throw NotImplementedError("Domain1D::setTransport");
77 }
78
79 //! The container holding this domain.
80 const OneDim& container() const {
81 return *m_container;
82 }
83
84 //! Specify the container object for this domain, and the position of this
85 //! domain in the list.
86 void setContainer(OneDim* c, size_t index) {
87 m_container = c;
88 m_index = index;
89 }
90
91 //! Set the Jacobian bandwidth. See the discussion of method bandwidth().
92 void setBandwidth(int bw = -1) {
93 m_bw = bw;
94 }
95
96 //! Set the Jacobian bandwidth for this domain.
97 /**
98 * When class OneDim computes the bandwidth of the overall multi-domain
99 * problem (in OneDim::resize()), it calls this method for the bandwidth
100 * of each domain. If setBandwidth has not been called, then a negative
101 * bandwidth is returned, in which case OneDim assumes that this domain is
102 * dense -- that is, at each point, all components depend on the value of
103 * all other components at that point. In this case, the bandwidth is bw =
104 * 2*nComponents() - 1. However, if this domain contains some components
105 * that are uncoupled from other components at the same point, then this
106 * default bandwidth may greatly overestimate the true bandwidth, with a
107 * substantial penalty in performance. For such domains, use method
108 * setBandwidth to specify the bandwidth before passing this domain to the
109 * Sim1D or OneDim constructor.
110 */
111 size_t bandwidth() {
112 return m_bw;
113 }
114
115 /**
116 * Initialize. This method is called by OneDim::init() for each domain once
117 * at the beginning of a simulation. Base class method does nothing, but may
118 * be overloaded.
119 */
120 virtual void init() { }
121
122 virtual void setInitialState(double* xlocal = 0) {}
123 virtual void setState(size_t point, const double* state, double* x) {}
124
125 /**
126 * When called, this function should reset "bad" values in the state vector
127 * such as negative species concentrations. This function may be called
128 * after a failed solution attempt.
129 */
130 virtual void resetBadValues(double* xg) {}
131
132 /**
133 * Resize the domain to have nv components and np grid points. This method
134 * is virtual so that subclasses can perform other actions required to
135 * resize the domain.
136 */
137 virtual void resize(size_t nv, size_t np);
138
139 //! Return a reference to the grid refiner.
141 return *m_refiner;
142 }
143
144 //! Number of components at each grid point.
145 size_t nComponents() const {
146 return m_nv;
147 }
148
149 //! Check that the specified component index is in range.
150 //! Throws an exception if n is greater than nComponents()-1
151 void checkComponentIndex(size_t n) const {
152 if (n >= m_nv) {
153 throw IndexError("Domain1D::checkComponentIndex", "points", n, m_nv-1);
154 }
155 }
156
157 //! Check that an array size is at least nComponents().
158 //! Throws an exception if nn is less than nComponents(). Used before calls
159 //! which take an array pointer.
160 void checkComponentArraySize(size_t nn) const {
161 if (m_nv > nn) {
162 throw ArraySizeError("Domain1D::checkComponentArraySize", nn, m_nv);
163 }
164 }
165
166 //! Number of grid points in this domain.
167 size_t nPoints() const {
168 return m_points;
169 }
170
171 //! Check that the specified point index is in range.
172 //! Throws an exception if n is greater than nPoints()-1
173 void checkPointIndex(size_t n) const {
174 if (n >= m_points) {
175 throw IndexError("Domain1D::checkPointIndex", "points", n, m_points-1);
176 }
177 }
178
179 //! Check that an array size is at least nPoints().
180 //! Throws an exception if nn is less than nPoints(). Used before calls
181 //! which take an array pointer.
182 void checkPointArraySize(size_t nn) const {
183 if (m_points > nn) {
184 throw ArraySizeError("Domain1D::checkPointArraySize", nn, m_points);
185 }
186 }
187
188 //! Name of the nth component. May be overloaded.
189 virtual string componentName(size_t n) const;
190
191 void setComponentName(size_t n, const string& name) {
192 m_name[n] = name;
193 }
194
195 //! index of component with name @e name.
196 virtual size_t componentIndex(const string& name) const;
197
198 void setBounds(size_t n, double lower, double upper) {
199 m_min[n] = lower;
200 m_max[n] = upper;
201 }
202
203 //! Set tolerances for time-stepping mode
204 /*!
205 * @param rtol Relative tolerance
206 * @param atol Absolute tolerance
207 * @param n component index these tolerances apply to. If set to -1 (the
208 * default), these tolerances will be applied to all solution
209 * components.
210 */
211 void setTransientTolerances(double rtol, double atol, size_t n=npos);
212
213 //! Set tolerances for steady-state mode
214 /*!
215 * @param rtol Relative tolerance
216 * @param atol Absolute tolerance
217 * @param n component index these tolerances apply to. If set to -1 (the
218 * default), these tolerances will be applied to all solution
219 * components.
220 */
221 void setSteadyTolerances(double rtol, double atol, size_t n=npos);
222
223 //! Relative tolerance of the nth component.
224 double rtol(size_t n) {
225 return (m_rdt == 0.0 ? m_rtol_ss[n] : m_rtol_ts[n]);
226 }
227
228 //! Absolute tolerance of the nth component.
229 double atol(size_t n) {
230 return (m_rdt == 0.0 ? m_atol_ss[n] : m_atol_ts[n]);
231 }
232
233 //! Steady relative tolerance of the nth component
234 double steady_rtol(size_t n) {
235 return m_rtol_ss[n];
236 }
237
238 //! Steady absolute tolerance of the nth component
239 double steady_atol(size_t n) {
240 return m_atol_ss[n];
241 }
242
243 //! Transient relative tolerance of the nth component
244 double transient_rtol(size_t n) {
245 return m_rtol_ts[n];
246 }
247
248 //! Transient absolute tolerance of the nth component
249 double transient_atol(size_t n) {
250 return m_atol_ts[n];
251 }
252
253 //! Upper bound on the nth component.
254 double upperBound(size_t n) const {
255 return m_max[n];
256 }
257
258 //! Lower bound on the nth component
259 double lowerBound(size_t n) const {
260 return m_min[n];
261 }
262
263 //! Prepare to do time stepping with time step dt
264 /*!
265 * Copy the internally-stored solution at the last time step to array x0.
266 */
267 void initTimeInteg(double dt, const double* x0) {
268 std::copy(x0 + loc(), x0 + loc() + size(), m_slast.begin());
269 m_rdt = 1.0/dt;
270 }
271
272 //! Prepare to solve the steady-state problem
273 /*!
274 * Set the internally-stored reciprocal of the time step to 0.0
275 */
277 m_rdt = 0.0;
278 }
279
280 //! True if in steady-state mode
281 bool steady() {
282 return (m_rdt == 0.0);
283 }
284
285 //! True if not in steady-state mode
286 bool transient() {
287 return (m_rdt != 0.0);
288 }
289
290 /**
291 * Set this if something has changed in the governing
292 * equations (for example, the value of a constant has been changed,
293 * so that the last-computed Jacobian is no longer valid.
294 */
295 void needJacUpdate();
296
297 //! Evaluate the residual function at point j. If j == npos,
298 //! evaluate the residual function at all points.
299 /*!
300 * This function must be implemented in classes derived from Domain1D.
301 *
302 * @param j Grid point at which to update the residual
303 * @param[in] x State vector
304 * @param[out] r residual vector
305 * @param[out] mask Boolean mask indicating whether each solution
306 * component has a time derivative (1) or not (0).
307 * @param[in] rdt Reciprocal of the timestep (`rdt=0` implies steady-
308 * state.)
309 */
310 virtual void eval(size_t j, double* x, double* r, integer* mask, double rdt=0.0) {
311 throw NotImplementedError("Domain1D::eval");
312 }
313
314 size_t index(size_t n, size_t j) const {
315 return m_nv*j + n;
316 }
317 double value(const double* x, size_t n, size_t j) const {
318 return x[index(n,j)];
319 }
320
321 virtual void setJac(MultiJac* jac) {}
322
323 //! Save the state of this domain as a SolutionArray.
324 /*!
325 * @param soln local solution vector for this domain
326 * @todo Despite the method's name, data are copied; the intent is to access data
327 * directly in future revisions, where a non-const version will be implemented.
328 *
329 * @since New in %Cantera 3.0.
330 */
331 virtual shared_ptr<SolutionArray> asArray(const double* soln) const {
332 throw NotImplementedError("Domain1D::asArray", "Needs to be overloaded.");
333 }
334
335 //! Save the state of this domain to a SolutionArray.
336 /*!
337 * This method serves as an external interface for high-level API's; it does not
338 * provide direct access to memory.
339 * @param normalize If true, normalize concentrations (default=false)
340 *
341 * @since New in %Cantera 3.0.
342 */
343 shared_ptr<SolutionArray> toArray(bool normalize=false) const;
344
345 //! Restore the solution for this domain from a SolutionArray
346 /*!
347 * @param[in] arr SolutionArray defining the state of this domain
348 * @param[out] soln Value of the solution vector, local to this domain
349 *
350 * @since New in %Cantera 3.0.
351 */
352 virtual void fromArray(SolutionArray& arr, double* soln) {
353 throw NotImplementedError("Domain1D::fromArray", "Needs to be overloaded.");
354 }
355
356 //! Restore the solution for this domain from a SolutionArray.
357 /*!
358 * This method serves as an external interface for high-level API's.
359 * @param arr SolutionArray defining the state of this domain
360 * @since New in %Cantera 3.0.
361 */
362 void fromArray(const shared_ptr<SolutionArray>& arr);
363
364 //! Return thermo/kinetics/transport manager used in the domain
365 //! @since New in %Cantera 3.0.
366 shared_ptr<Solution> solution() const {
367 return m_solution;
368 }
369
370 size_t size() const {
371 return m_nv*m_points;
372 }
373
374 /**
375 * Find the index of the first grid point in this domain, and
376 * the start of its variables in the global solution vector.
377 */
378 void locate();
379
380 /**
381 * Location of the start of the local solution vector in the global
382 * solution vector,
383 */
384 virtual size_t loc(size_t j = 0) const {
385 return m_iloc;
386 }
387
388 /**
389 * The index of the first (that is, left-most) grid point belonging to this
390 * domain.
391 */
392 size_t firstPoint() const {
393 return m_jstart;
394 }
395
396 /**
397 * The index of the last (that is, right-most) grid point belonging to this
398 * domain.
399 */
400 size_t lastPoint() const {
401 return m_jstart + m_points - 1;
402 }
403
404 /**
405 * Set the left neighbor to domain 'left.' Method 'locate' is called to
406 * update the global positions of this domain and all those to its right.
407 */
409 m_left = left;
410 if (!m_solution && left && left->solution()) {
412 }
413 locate();
414 }
415
416 //! Set the right neighbor to domain 'right.'
418 m_right = right;
419 if (!m_solution && right && right->solution()) {
421 }
422 }
423
424 //! Append domain 'right' to this one, and update all links.
427 right->linkLeft(this);
428 }
429
430 //! Return a pointer to the left neighbor.
431 Domain1D* left() const {
432 return m_left;
433 }
434
435 //! Return a pointer to the right neighbor.
436 Domain1D* right() const {
437 return m_right;
438 }
439
440 //! Value of component n at point j in the previous solution.
441 double prevSoln(size_t n, size_t j) const {
442 return m_slast[m_nv*j + n];
443 }
444
445 //! Specify an identifying tag for this domain.
446 void setID(const string& s) {
447 m_id = s;
448 }
449
450 string id() const {
451 if (m_id != "") {
452 return m_id;
453 } else {
454 return fmt::format("domain {}", m_index);
455 }
456 }
457
458 //! Print the solution.
459 virtual void show(std::ostream& s, const double* x) {}
460
461 //! Print the solution.
462 virtual void show(const double* x);
463
464 double z(size_t jlocal) const {
465 return m_z[jlocal];
466 }
467 double zmin() const {
468 return m_z[0];
469 }
470 double zmax() const {
471 return m_z[m_points - 1];
472 }
473
474 void setProfile(const string& name, double* values, double* soln);
475
476 vector<double>& grid() {
477 return m_z;
478 }
479 const vector<double>& grid() const {
480 return m_z;
481 }
482 double grid(size_t point) const {
483 return m_z[point];
484 }
485
486 //! called to set up initial grid, and after grid refinement
487 virtual void setupGrid(size_t n, const double* z);
488
489 /**
490 * Writes some or all initial solution values into the global solution
491 * array, beginning at the location pointed to by x. This method is called
492 * by the Sim1D constructor, and allows default values or ones that have
493 * been set locally prior to installing this domain into the container to be
494 * written to the global solution vector.
495 */
496 virtual void _getInitialSoln(double* x);
497
498 //! Initial value of solution component @e n at grid point @e j.
499 virtual double initialValue(size_t n, size_t j);
500
501 /**
502 * In some cases, a domain may need to set parameters that depend on the
503 * initial solution estimate. In such cases, the parameters may be set in
504 * method _finalize. This method is called just before the Newton solver is
505 * called, and the x array is guaranteed to be the local solution vector for
506 * this domain that will be used as the initial guess. If no such parameters
507 * need to be set, then method _finalize does not need to be overloaded.
508 */
509 virtual void _finalize(const double* x) {}
510
511 /**
512 * In some cases, for computational efficiency some properties (such as
513 * transport coefficients) may not be updated during Jacobian evaluations.
514 * Set this to `true` to force these properties to be updated even while
515 * calculating Jacobian elements.
516 */
517 void forceFullUpdate(bool update) {
518 m_force_full_update = update;
519 }
520
521 //! Set shared data pointer
522 void setData(shared_ptr<vector<double>>& data) {
523 m_state = data;
524 }
525
526protected:
527 //! Retrieve meta data
528 virtual AnyMap getMeta() const;
529
530 //! Retrieve meta data
531 virtual void setMeta(const AnyMap& meta);
532
533 shared_ptr<vector<double>> m_state; //!< data pointer shared from OneDim
534
535 double m_rdt = 0.0;
536 size_t m_nv = 0;
537 size_t m_points; //!< Number of grid points
538 vector<double> m_slast;
539 vector<double> m_max;
540 vector<double> m_min;
541 vector<double> m_rtol_ss, m_rtol_ts;
542 vector<double> m_atol_ss, m_atol_ts;
543 vector<double> m_z;
544 OneDim* m_container = nullptr;
545 size_t m_index;
546
547 //! Starting location within the solution vector for unknowns that
548 //! correspond to this domain
549 /*!
550 * Remember there may be multiple domains associated with this problem
551 */
552 size_t m_iloc = 0;
553
554 size_t m_jstart = 0;
555
556 Domain1D* m_left = nullptr;
557 Domain1D* m_right = nullptr;
558
559 //! Identity tag for the domain
560 string m_id;
561 unique_ptr<Refiner> m_refiner;
562 vector<string> m_name;
563 int m_bw = -1;
564 bool m_force_full_update = false;
565
566 //! Composite thermo/kinetics/transport handler
567 shared_ptr<Solution> m_solution;
568};
569}
570
571#endif
A map of string keys to values whose type can vary at runtime.
Definition AnyMap.h:427
Array size error.
Base class for one-dimensional domains.
Definition Domain1D.h:28
void setTransientTolerances(double rtol, double atol, size_t n=npos)
Set tolerances for time-stepping mode.
Definition Domain1D.cpp:69
virtual void resetBadValues(double *xg)
When called, this function should reset "bad" values in the state vector such as negative species con...
Definition Domain1D.h:130
size_t lastPoint() const
The index of the last (that is, right-most) grid point belonging to this domain.
Definition Domain1D.h:400
size_t m_iloc
Starting location within the solution vector for unknowns that correspond to this domain.
Definition Domain1D.h:552
void checkPointArraySize(size_t nn) const
Check that an array size is at least nPoints().
Definition Domain1D.h:182
size_t domainIndex()
The left-to-right location of this domain.
Definition Domain1D.h:52
shared_ptr< Solution > m_solution
Composite thermo/kinetics/transport handler.
Definition Domain1D.h:567
bool transient()
True if not in steady-state mode.
Definition Domain1D.h:286
size_t nComponents() const
Number of components at each grid point.
Definition Domain1D.h:145
size_t bandwidth()
Set the Jacobian bandwidth for this domain.
Definition Domain1D.h:111
double rtol(size_t n)
Relative tolerance of the nth component.
Definition Domain1D.h:224
shared_ptr< Solution > solution() const
Return thermo/kinetics/transport manager used in the domain.
Definition Domain1D.h:366
virtual bool isConnector()
True if the domain is a connector domain.
Definition Domain1D.h:57
virtual void setTransport(shared_ptr< Transport > trans)
Set transport model to existing instance.
Definition Domain1D.h:75
virtual void setMeta(const AnyMap &meta)
Retrieve meta data.
Definition Domain1D.cpp:155
virtual void _finalize(const double *x)
In some cases, a domain may need to set parameters that depend on the initial solution estimate.
Definition Domain1D.h:509
Domain1D * left() const
Return a pointer to the left neighbor.
Definition Domain1D.h:431
void setContainer(OneDim *c, size_t index)
Specify the container object for this domain, and the position of this domain in the list.
Definition Domain1D.h:86
size_t nPoints() const
Number of grid points in this domain.
Definition Domain1D.h:167
virtual string domainType() const
Domain type flag.
Definition Domain1D.h:44
double lowerBound(size_t n) const
Lower bound on the nth component.
Definition Domain1D.h:259
void checkComponentIndex(size_t n) const
Check that the specified component index is in range.
Definition Domain1D.h:151
shared_ptr< vector< double > > m_state
data pointer shared from OneDim
Definition Domain1D.h:533
void linkLeft(Domain1D *left)
Set the left neighbor to domain 'left.
Definition Domain1D.h:408
virtual void resize(size_t nv, size_t np)
Resize the domain to have nv components and np grid points.
Definition Domain1D.cpp:26
double upperBound(size_t n) const
Upper bound on the nth component.
Definition Domain1D.h:254
Refiner & refiner()
Return a reference to the grid refiner.
Definition Domain1D.h:140
Domain1D * right() const
Return a pointer to the right neighbor.
Definition Domain1D.h:436
double steady_atol(size_t n)
Steady absolute tolerance of the nth component.
Definition Domain1D.h:239
void setSteadyTolerances(double rtol, double atol, size_t n=npos)
Set tolerances for steady-state mode.
Definition Domain1D.cpp:82
virtual shared_ptr< SolutionArray > asArray(const double *soln) const
Save the state of this domain as a SolutionArray.
Definition Domain1D.h:331
virtual string componentName(size_t n) const
Name of the nth component. May be overloaded.
Definition Domain1D.cpp:49
double transient_atol(size_t n)
Transient absolute tolerance of the nth component.
Definition Domain1D.h:249
void setSolution(shared_ptr< Solution > sol)
Set the solution manager.
Definition Domain1D.h:63
virtual void init()
Initialize.
Definition Domain1D.h:120
double atol(size_t n)
Absolute tolerance of the nth component.
Definition Domain1D.h:229
void setID(const string &s)
Specify an identifying tag for this domain.
Definition Domain1D.h:446
void forceFullUpdate(bool update)
In some cases, for computational efficiency some properties (such as transport coefficients) may not ...
Definition Domain1D.h:517
const OneDim & container() const
The container holding this domain.
Definition Domain1D.h:80
virtual void setKinetics(shared_ptr< Kinetics > kin)
Set the kinetics manager.
Definition Domain1D.h:69
shared_ptr< SolutionArray > toArray(bool normalize=false) const
Save the state of this domain to a SolutionArray.
Definition Domain1D.cpp:131
size_t m_points
Number of grid points.
Definition Domain1D.h:537
bool steady()
True if in steady-state mode.
Definition Domain1D.h:281
void setBandwidth(int bw=-1)
Set the Jacobian bandwidth. See the discussion of method bandwidth().
Definition Domain1D.h:92
double steady_rtol(size_t n)
Steady relative tolerance of the nth component.
Definition Domain1D.h:234
string m_id
Identity tag for the domain.
Definition Domain1D.h:560
string type() const
String indicating the domain implemented.
Definition Domain1D.h:49
void initTimeInteg(double dt, const double *x0)
Prepare to do time stepping with time step dt.
Definition Domain1D.h:267
void setData(shared_ptr< vector< double > > &data)
Set shared data pointer.
Definition Domain1D.h:522
virtual void eval(size_t j, double *x, double *r, integer *mask, double rdt=0.0)
Evaluate the residual function at point j.
Definition Domain1D.h:310
void append(Domain1D *right)
Append domain 'right' to this one, and update all links.
Definition Domain1D.h:425
void setSteadyMode()
Prepare to solve the steady-state problem.
Definition Domain1D.h:276
virtual double initialValue(size_t n, size_t j)
Initial value of solution component n at grid point j.
Definition Domain1D.cpp:275
void checkPointIndex(size_t n) const
Check that the specified point index is in range.
Definition Domain1D.h:173
virtual size_t componentIndex(const string &name) const
index of component with name name.
Definition Domain1D.cpp:58
double prevSoln(size_t n, size_t j) const
Value of component n at point j in the previous solution.
Definition Domain1D.h:441
virtual void fromArray(SolutionArray &arr, double *soln)
Restore the solution for this domain from a SolutionArray.
Definition Domain1D.h:352
size_t firstPoint() const
The index of the first (that is, left-most) grid point belonging to this domain.
Definition Domain1D.h:392
void needJacUpdate()
Set this if something has changed in the governing equations (for example, the value of a constant ha...
Definition Domain1D.cpp:95
void linkRight(Domain1D *right)
Set the right neighbor to domain 'right.'.
Definition Domain1D.h:417
virtual void _getInitialSoln(double *x)
Writes some or all initial solution values into the global solution array, beginning at the location ...
Definition Domain1D.cpp:266
void checkComponentArraySize(size_t nn) const
Check that an array size is at least nComponents().
Definition Domain1D.h:160
double transient_rtol(size_t n)
Transient relative tolerance of the nth component.
Definition Domain1D.h:244
virtual size_t loc(size_t j=0) const
Location of the start of the local solution vector in the global solution vector,.
Definition Domain1D.h:384
void locate()
Find the index of the first grid point in this domain, and the start of its variables in the global s...
Definition Domain1D.cpp:187
virtual AnyMap getMeta() const
Retrieve meta data.
Definition Domain1D.cpp:103
virtual void show(std::ostream &s, const double *x)
Print the solution.
Definition Domain1D.h:459
virtual void setupGrid(size_t n, const double *z)
called to set up initial grid, and after grid refinement
Definition Domain1D.cpp:207
An array index is out of range.
An error indicating that an unimplemented function has been called.
Container class for multiple-domain 1D problems.
Definition OneDim.h:27
Refine Domain1D grids so that profiles satisfy adaptation tolerances.
Definition refine.h:17
A container class holding arrays of state information.
Definitions for the classes that are thrown when Cantera experiences an error condition (also contain...
Namespace for the Cantera kernel.
Definition AnyMap.cpp:564
const size_t npos
index returned by functions to indicate "no position"
Definition ct_defs.h:180