Implements a Gaussian function.
The functor class with type "Gaussian"
returns
\[
f(t) = A e^{-[(t - t_0)/\tau]^2}
\]
where \( \tau = \mathrm{fwhm} / (2 \sqrt{\ln 2}) \).
- Parameters
-
A | peak value |
t0 | offset |
fwhm | full width at half max |
- Since
- New in Cantera 3.0.
Definition at line 765 of file Func1.h.
|
| Gaussian1 (double A, double t0, double fwhm) |
|
| Gaussian1 (const vector< double > ¶ms) |
| Constructor uses 3 parameters in the following order: \( [A, t_0, \mathrm{fwhm}] \).
|
|
string | type () const override |
| Returns a string describing the type of the function.
|
|
double | eval (double t) const override |
| Evaluate the function.
|
|
| Func1 (shared_ptr< Func1 > f1, shared_ptr< Func1 > f2) |
|
| Func1 (shared_ptr< Func1 > f1, double A) |
|
| Func1 (const Func1 &right)=delete |
|
Func1 & | operator= (const Func1 &right)=delete |
|
virtual string | type () const |
| Returns a string describing the type of the function.
|
|
string | typeName () const |
| Returns a string with the class name of the functor.
|
|
double | operator() (double t) const |
| Calls method eval to evaluate the function.
|
|
virtual double | eval (double t) const |
| Evaluate the function.
|
|
virtual shared_ptr< Func1 > | derivative () const |
| Creates a derivative to the current function.
|
|
shared_ptr< Func1 > | derivative3 () const |
| Creates a derivative to the current function.
|
|
bool | isIdentical (Func1 &other) const |
| Routine to determine if two functions are the same.
|
|
virtual double | isProportional (TimesConstant1 &other) |
|
virtual double | isProportional (Func1 &other) |
|
virtual string | write (const string &arg) const |
| Write LaTeX string describing function.
|
|
double | c () const |
| Accessor function for the stored constant.
|
|
shared_ptr< Func1 > | func1_shared () const |
| Accessor function for m_f1_shared.
|
|
shared_ptr< Func1 > | func2_shared () const |
| Accessor function for m_f2_shared.
|
|
virtual int | order () const |
| Return the order of the function, if it makes sense.
|
|