Cantera  3.1.0a1
Loading...
Searching...
No Matches
IdealGasPhase Class Reference

Class IdealGasPhase represents low-density gases that obey the ideal gas equation of state. More...

#include <IdealGasPhase.h>

Inheritance diagram for IdealGasPhase:
[legend]

Detailed Description

Class IdealGasPhase represents low-density gases that obey the ideal gas equation of state.

IdealGasPhase derives from class ThermoPhase, and overloads the virtual methods defined there with ones that use expressions appropriate for ideal gas mixtures.

The independent unknowns are density, mass fraction, and temperature. the setPressure() function will calculate the density consistent with the current mass fraction vector and temperature and the desired pressure, and then set the density.

Specification of Species Standard State Properties

It is assumed that the reference state thermodynamics may be obtained by a pointer to a populated species thermodynamic property manager class in the base class, ThermoPhase::m_spthermo (see the base class MultiSpeciesThermo for a description of the specification of reference state species thermodynamics functions). The reference state, where the pressure is fixed at a single pressure, is a key species property calculation for the Ideal Gas Equation of state.

This class is optimized for speed of execution. All calls to thermodynamic functions first call internal routines (aka enthalpy_RT_ref()) which return references the reference state thermodynamics functions. Within these internal reference state functions, the function updateThermo() is called, that first checks to see whether the temperature has changed. If it has, it updates the internal reference state thermo functions by calling the MultiSpeciesThermo object.

Functions for the calculation of standard state properties for species at arbitrary pressure are provided in IdealGasPhase. However, they are all derived from their reference state counterparts.

The standard state enthalpy is independent of pressure:

\[ h^o_k(T,P) = h^{ref}_k(T) \]

The standard state constant-pressure heat capacity is independent of pressure:

\[ Cp^o_k(T,P) = Cp^{ref}_k(T) \]

The standard state entropy depends in the following fashion on pressure:

\[ S^o_k(T,P) = S^{ref}_k(T) - R \ln(\frac{P}{P_{ref}}) \]

The standard state Gibbs free energy is obtained from the enthalpy and entropy functions:

\[ \mu^o_k(T,P) = h^o_k(T,P) - S^o_k(T,P) T \]

\[ \mu^o_k(T,P) = \mu^{ref}_k(T) + R T \ln( \frac{P}{P_{ref}}) \]

where

\[ \mu^{ref}_k(T) = h^{ref}_k(T) - T S^{ref}_k(T) \]

The standard state internal energy is obtained from the enthalpy function also

\[ u^o_k(T,P) = h^o_k(T) - R T \]

The molar volume of a species is given by the ideal gas law

\[ V^o_k(T,P) = \frac{R T}{P} \]

where R is the molar gas constant. For a complete list of physical constants used within Cantera, see Physical Constants .

Specification of Solution Thermodynamic Properties

The activity of a species defined in the phase is given by the ideal gas law:

\[ a_k = X_k \]

where \( X_k \) is the mole fraction of species k. The chemical potential for species k is equal to

\[ \mu_k(T,P) = \mu^o_k(T, P) + R T \ln X_k \]

In terms of the reference state, the above can be rewritten

\[ \mu_k(T,P) = \mu^{ref}_k(T, P) + R T \ln \frac{P X_k}{P_{ref}} \]

The partial molar entropy for species k is given by the following relation,

\[ \tilde{s}_k(T,P) = s^o_k(T,P) - R \ln X_k = s^{ref}_k(T) - R \ln \frac{P X_k}{P_{ref}} \]

The partial molar enthalpy for species k is

\[ \tilde{h}_k(T,P) = h^o_k(T,P) = h^{ref}_k(T) \]

The partial molar Internal Energy for species k is

\[ \tilde{u}_k(T,P) = u^o_k(T,P) = u^{ref}_k(T) \]

The partial molar Heat Capacity for species k is

\[ \tilde{Cp}_k(T,P) = Cp^o_k(T,P) = Cp^{ref}_k(T) \]

Application within Kinetics Managers

\( C^a_k \) are defined such that \( a_k = C^a_k / C^s_k, \) where \( C^s_k \) is a standard concentration defined below and \( a_k \) are activities used in the thermodynamic functions. These activity (or generalized) concentrations are used by kinetics manager classes to compute the forward and reverse rates of elementary reactions. The activity concentration, \( C^a_k \),is given by the following expression.

\[ C^a_k = C^s_k X_k = \frac{P}{R T} X_k \]

The standard concentration for species k is independent of k and equal to

\[ C^s_k = C^s = \frac{P}{R T} \]

For example, a bulk-phase binary gas reaction between species j and k, producing a new gas species l would have the following equation for its rate of progress variable, \( R^1 \), which has units of kmol m-3 s-1.

\[ R^1 = k^1 C_j^a C_k^a = k^1 (C^s a_j) (C^s a_k) \]

where

\[ C_j^a = C^s a_j \quad \mbox{and} \quad C_k^a = C^s a_k \]

\( C_j^a \) is the activity concentration of species j, and \( C_k^a \) is the activity concentration of species k. \( C^s \) is the standard concentration. \( a_j \) is the activity of species j which is equal to the mole fraction of j.

The reverse rate constant can then be obtained from the law of microscopic reversibility and the equilibrium expression for the system.

\[ \frac{a_j a_k}{ a_l} = K_a^{o,1} = \exp(\frac{\mu^o_l - \mu^o_j - \mu^o_k}{R T} ) \]

\( K_a^{o,1} \) is the dimensionless form of the equilibrium constant, associated with the pressure dependent standard states \( \mu^o_l(T,P) \) and their associated activities, \( a_l \), repeated here:

\[ \mu_l(T,P) = \mu^o_l(T, P) + R T \ln a_l \]

We can switch over to expressing the equilibrium constant in terms of the reference state chemical potentials

\[ K_a^{o,1} = \exp(\frac{\mu^{ref}_l - \mu^{ref}_j - \mu^{ref}_k}{R T} ) * \frac{P_{ref}}{P} \]

The concentration equilibrium constant, \( K_c \), may be obtained by changing over to activity concentrations. When this is done:

\[ \frac{C^a_j C^a_k}{ C^a_l} = C^o K_a^{o,1} = K_c^1 = \exp(\frac{\mu^{ref}_l - \mu^{ref}_j - \mu^{ref}_k}{R T} ) * \frac{P_{ref}}{RT} \]

Kinetics managers will calculate the concentration equilibrium constant, \( K_c \), using the second and third part of the above expression as a definition for the concentration equilibrium constant.

For completeness, the pressure equilibrium constant may be obtained as well

\[ \frac{P_j P_k}{ P_l P_{ref}} = K_p^1 = \exp\left(\frac{\mu^{ref}_l - \mu^{ref}_j - \mu^{ref}_k}{R T} \right) \]

\( K_p \) is the simplest form of the equilibrium constant for ideal gases. However, it isn't necessarily the simplest form of the equilibrium constant for other types of phases; \( K_c \) is used instead because it is completely general.

The reverse rate of progress may be written down as

\[ R^{-1} = k^{-1} C_l^a = k^{-1} (C^o a_l) \]

where we can use the concept of microscopic reversibility to write the reverse rate constant in terms of the forward rate constant and the concentration equilibrium constant, \( K_c \).

\[ k^{-1} = k^1 K^1_c \]

\( k^{-1} \) has units of s-1.

YAML Example

An example ideal gas phase definition is given in the YAML API Reference.

Definition at line 249 of file IdealGasPhase.h.

Public Member Functions

 IdealGasPhase (const string &inputFile="", const string &id="")
 Construct and initialize an IdealGasPhase ThermoPhase object directly from an input file.
 
string type () const override
 String indicating the thermodynamic model implemented.
 
bool isIdeal () const override
 Boolean indicating whether phase is ideal.
 
string phaseOfMatter () const override
 String indicating the mechanical phase of the matter in this Phase.
 
bool addSpecies (shared_ptr< Species > spec) override
 Add a Species to this Phase.
 
void setToEquilState (const double *mu_RT) override
 This method is used by the ChemEquil equilibrium solver.
 
Molar Thermodynamic Properties of the Solution
double enthalpy_mole () const override
 Return the Molar enthalpy. Units: J/kmol.
 
double entropy_mole () const override
 Molar entropy.
 
double cp_mole () const override
 Molar heat capacity at constant pressure.
 
double cv_mole () const override
 Molar heat capacity at constant volume.
 
Mechanical Equation of State
double pressure () const override
 Pressure.
 
void setPressure (double p) override
 Set the pressure at constant temperature and composition.
 
void setState_DP (double rho, double p) override
 Set the density and pressure at constant composition.
 
double isothermalCompressibility () const override
 Returns the isothermal compressibility. Units: 1/Pa.
 
double thermalExpansionCoeff () const override
 Return the volumetric thermal expansion coefficient. Units: 1/K.
 
double soundSpeed () const override
 Return the speed of sound. Units: m/s.
 
Chemical Potentials and Activities

The activity \( a_k \) of a species in solution is related to the chemical potential by

\[ \mu_k(T,P,X_k) = \mu_k^0(T,P) + \hat R T \ln a_k. \]

The quantity \( \mu_k^0(T,P) \) is the standard state chemical potential at unit activity. It may depend on the pressure and the temperature. However, it may not depend on the mole fractions of the species in the solution.

The activities are related to the generalized concentrations, \( \tilde C_k \), and standard concentrations, \( C^0_k \), by the following formula:

\[ a_k = \frac{\tilde C_k}{C^0_k} \]

The generalized concentrations are used in the kinetics classes to describe the rates of progress of reactions involving the species. Their formulation depends upon the specification of the rate constants for reaction, especially the units used in specifying the rate constants. The bridge between the thermodynamic equilibrium expressions that use a_k and the kinetics expressions which use the generalized concentrations is provided by the multiplicative factor of the standard concentrations.

void getActivityConcentrations (double *c) const override
 This method returns the array of generalized concentrations.
 
double standardConcentration (size_t k=0) const override
 Returns the standard concentration \( C^0_k \), which is used to normalize the generalized concentration.
 
void getActivityCoefficients (double *ac) const override
 Get the array of non-dimensional activity coefficients at the current solution temperature, pressure, and solution concentration.
 
Partial Molar Properties of the Solution
void getChemPotentials (double *mu) const override
 Get the species chemical potentials. Units: J/kmol.
 
void getPartialMolarEnthalpies (double *hbar) const override
 Returns an array of partial molar enthalpies for the species in the mixture.
 
void getPartialMolarEntropies (double *sbar) const override
 Returns an array of partial molar entropies of the species in the solution.
 
void getPartialMolarIntEnergies (double *ubar) const override
 Return an array of partial molar internal energies for the species in the mixture.
 
void getPartialMolarCp (double *cpbar) const override
 Return an array of partial molar heat capacities for the species in the mixture.
 
void getPartialMolarVolumes (double *vbar) const override
 Return an array of partial molar volumes for the species in the mixture.
 
Properties of the Standard State of the Species in the Solution
void getStandardChemPotentials (double *mu) const override
 Get the array of chemical potentials at unit activity for the species at their standard states at the current T and P of the solution.
 
void getEnthalpy_RT (double *hrt) const override
 Get the nondimensional Enthalpy functions for the species at their standard states at the current T and P of the solution.
 
void getEntropy_R (double *sr) const override
 Get the array of nondimensional Entropy functions for the standard state species at the current T and P of the solution.
 
void getGibbs_RT (double *grt) const override
 Get the nondimensional Gibbs functions for the species in their standard states at the current T and P of the solution.
 
void getPureGibbs (double *gpure) const override
 Get the Gibbs functions for the standard state of the species at the current T and P of the solution.
 
void getIntEnergy_RT (double *urt) const override
 Returns the vector of nondimensional Internal Energies of the standard state species at the current T and P of the solution.
 
void getCp_R (double *cpr) const override
 Get the nondimensional Heat Capacities at constant pressure for the species standard states at the current T and P of the solution.
 
void getStandardVolumes (double *vol) const override
 Get the molar volumes of the species standard states at the current T and P of the solution.
 
Thermodynamic Values for the Species Reference States
void getEnthalpy_RT_ref (double *hrt) const override
 Returns the vector of nondimensional enthalpies of the reference state at the current temperature of the solution and the reference pressure for the species.
 
void getGibbs_RT_ref (double *grt) const override
 Returns the vector of nondimensional Gibbs Free Energies of the reference state at the current temperature of the solution and the reference pressure for the species.
 
void getGibbs_ref (double *g) const override
 Returns the vector of the Gibbs function of the reference state at the current temperature of the solution and the reference pressure for the species.
 
void getEntropy_R_ref (double *er) const override
 Returns the vector of nondimensional entropies of the reference state at the current temperature of the solution and the reference pressure for each species.
 
void getIntEnergy_RT_ref (double *urt) const override
 Returns the vector of nondimensional internal Energies of the reference state at the current temperature of the solution and the reference pressure for each species.
 
void getCp_R_ref (double *cprt) const override
 Returns the vector of nondimensional constant pressure heat capacities of the reference state at the current temperature of the solution and reference pressure for each species.
 
void getStandardVolumes_ref (double *vol) const override
 Get the molar volumes of the species reference states at the current T and P_ref of the solution.
 
NonVirtual Internal methods to Return References to Reference State Thermo
const vector< double > & enthalpy_RT_ref () const
 Returns a reference to the dimensionless reference state enthalpy vector.
 
const vector< double > & gibbs_RT_ref () const
 Returns a reference to the dimensionless reference state Gibbs free energy vector.
 
const vector< double > & entropy_R_ref () const
 Returns a reference to the dimensionless reference state Entropy vector.
 
const vector< double > & cp_R_ref () const
 Returns a reference to the dimensionless reference state Heat Capacity vector.
 
- Public Member Functions inherited from ThermoPhase
 ThermoPhase ()=default
 Constructor.
 
double RT () const
 Return the Gas Constant multiplied by the current temperature.
 
double equivalenceRatio () const
 Compute the equivalence ratio for the current mixture from available oxygen and required oxygen.
 
string type () const override
 String indicating the thermodynamic model implemented.
 
virtual double refPressure () const
 Returns the reference pressure in Pa.
 
virtual double minTemp (size_t k=npos) const
 Minimum temperature for which the thermodynamic data for the species or phase are valid.
 
double Hf298SS (const size_t k) const
 Report the 298 K Heat of Formation of the standard state of one species (J kmol-1)
 
virtual void modifyOneHf298SS (const size_t k, const double Hf298New)
 Modify the value of the 298 K Heat of Formation of one species in the phase (J kmol-1)
 
virtual void resetHf298 (const size_t k=npos)
 Restore the original heat of formation of one or more species.
 
virtual double maxTemp (size_t k=npos) const
 Maximum temperature for which the thermodynamic data for the species are valid.
 
bool chargeNeutralityNecessary () const
 Returns the chargeNeutralityNecessity boolean.
 
virtual double intEnergy_mole () const
 Molar internal energy. Units: J/kmol.
 
virtual double gibbs_mole () const
 Molar Gibbs function. Units: J/kmol.
 
void setElectricPotential (double v)
 Set the electric potential of this phase (V).
 
double electricPotential () const
 Returns the electric potential of this phase (V).
 
virtual int activityConvention () const
 This method returns the convention used in specification of the activities, of which there are currently two, molar- and molality-based conventions.
 
virtual int standardStateConvention () const
 This method returns the convention used in specification of the standard state, of which there are currently two, temperature based, and variable pressure based.
 
virtual Units standardConcentrationUnits () const
 Returns the units of the "standard concentration" for this phase.
 
virtual double logStandardConc (size_t k=0) const
 Natural logarithm of the standard concentration of the kth species.
 
virtual void getActivities (double *a) const
 Get the array of non-dimensional activities at the current solution temperature, pressure, and solution concentration.
 
virtual void getLnActivityCoefficients (double *lnac) const
 Get the array of non-dimensional molar-based ln activity coefficients at the current solution temperature, pressure, and solution concentration.
 
void getElectrochemPotentials (double *mu) const
 Get the species electrochemical potentials.
 
double enthalpy_mass () const
 Specific enthalpy. Units: J/kg.
 
double intEnergy_mass () const
 Specific internal energy. Units: J/kg.
 
double entropy_mass () const
 Specific entropy. Units: J/kg/K.
 
double gibbs_mass () const
 Specific Gibbs function. Units: J/kg.
 
double cp_mass () const
 Specific heat at constant pressure. Units: J/kg/K.
 
double cv_mass () const
 Specific heat at constant volume. Units: J/kg/K.
 
virtual void setState_TPX (double t, double p, const double *x)
 Set the temperature (K), pressure (Pa), and mole fractions.
 
virtual void setState_TPX (double t, double p, const Composition &x)
 Set the temperature (K), pressure (Pa), and mole fractions.
 
virtual void setState_TPX (double t, double p, const string &x)
 Set the temperature (K), pressure (Pa), and mole fractions.
 
virtual void setState_TPY (double t, double p, const double *y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase.
 
virtual void setState_TPY (double t, double p, const Composition &y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase.
 
virtual void setState_TPY (double t, double p, const string &y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase.
 
virtual void setState_TP (double t, double p)
 Set the temperature (K) and pressure (Pa)
 
virtual void setState_HP (double h, double p, double tol=1e-9)
 Set the internally stored specific enthalpy (J/kg) and pressure (Pa) of the phase.
 
virtual void setState_UV (double u, double v, double tol=1e-9)
 Set the specific internal energy (J/kg) and specific volume (m^3/kg).
 
virtual void setState_SP (double s, double p, double tol=1e-9)
 Set the specific entropy (J/kg/K) and pressure (Pa).
 
virtual void setState_SV (double s, double v, double tol=1e-9)
 Set the specific entropy (J/kg/K) and specific volume (m^3/kg).
 
virtual void setState_ST (double s, double t, double tol=1e-9)
 Set the specific entropy (J/kg/K) and temperature (K).
 
virtual void setState_TV (double t, double v, double tol=1e-9)
 Set the temperature (K) and specific volume (m^3/kg).
 
virtual void setState_PV (double p, double v, double tol=1e-9)
 Set the pressure (Pa) and specific volume (m^3/kg).
 
virtual void setState_UP (double u, double p, double tol=1e-9)
 Set the specific internal energy (J/kg) and pressure (Pa).
 
virtual void setState_VH (double v, double h, double tol=1e-9)
 Set the specific volume (m^3/kg) and the specific enthalpy (J/kg)
 
virtual void setState_TH (double t, double h, double tol=1e-9)
 Set the temperature (K) and the specific enthalpy (J/kg)
 
virtual void setState_SH (double s, double h, double tol=1e-9)
 Set the specific entropy (J/kg/K) and the specific enthalpy (J/kg)
 
virtual void setState (const AnyMap &state)
 Set the state using an AnyMap containing any combination of properties supported by the thermodynamic model.
 
void setMixtureFraction (double mixFrac, const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the mixture fraction = kg fuel / (kg oxidizer + kg fuel)
 
void setMixtureFraction (double mixFrac, const string &fuelComp, const string &oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the mixture fraction = kg fuel / (kg oxidizer + kg fuel)
 
void setMixtureFraction (double mixFrac, const Composition &fuelComp, const Composition &oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the mixture fraction = kg fuel / (kg oxidizer + kg fuel)
 
double mixtureFraction (const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar, const string &element="Bilger") const
 Compute the mixture fraction = kg fuel / (kg oxidizer + kg fuel) for the current mixture given fuel and oxidizer compositions.
 
double mixtureFraction (const string &fuelComp, const string &oxComp, ThermoBasis basis=ThermoBasis::molar, const string &element="Bilger") const
 Compute the mixture fraction = kg fuel / (kg oxidizer + kg fuel) for the current mixture given fuel and oxidizer compositions.
 
double mixtureFraction (const Composition &fuelComp, const Composition &oxComp, ThermoBasis basis=ThermoBasis::molar, const string &element="Bilger") const
 Compute the mixture fraction = kg fuel / (kg oxidizer + kg fuel) for the current mixture given fuel and oxidizer compositions.
 
void setEquivalenceRatio (double phi, const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the equivalence ratio.
 
void setEquivalenceRatio (double phi, const string &fuelComp, const string &oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the equivalence ratio.
 
void setEquivalenceRatio (double phi, const Composition &fuelComp, const Composition &oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the equivalence ratio.
 
double equivalenceRatio (const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the equivalence ratio for the current mixture given the compositions of fuel and oxidizer.
 
double equivalenceRatio (const string &fuelComp, const string &oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the equivalence ratio for the current mixture given the compositions of fuel and oxidizer.
 
double equivalenceRatio (const Composition &fuelComp, const Composition &oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the equivalence ratio for the current mixture given the compositions of fuel and oxidizer.
 
double stoichAirFuelRatio (const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the stoichiometric air to fuel ratio (kg oxidizer / kg fuel) given fuel and oxidizer compositions.
 
double stoichAirFuelRatio (const string &fuelComp, const string &oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the stoichiometric air to fuel ratio (kg oxidizer / kg fuel) given fuel and oxidizer compositions.
 
double stoichAirFuelRatio (const Composition &fuelComp, const Composition &oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the stoichiometric air to fuel ratio (kg oxidizer / kg fuel) given fuel and oxidizer compositions.
 
void equilibrate (const string &XY, const string &solver="auto", double rtol=1e-9, int max_steps=50000, int max_iter=100, int estimate_equil=0, int log_level=0)
 Equilibrate a ThermoPhase object.
 
virtual bool compatibleWithMultiPhase () const
 Indicates whether this phase type can be used with class MultiPhase for equilibrium calculations.
 
virtual double critTemperature () const
 Critical temperature (K).
 
virtual double critPressure () const
 Critical pressure (Pa).
 
virtual double critVolume () const
 Critical volume (m3/kmol).
 
virtual double critCompressibility () const
 Critical compressibility (unitless).
 
virtual double critDensity () const
 Critical density (kg/m3).
 
virtual double satTemperature (double p) const
 Return the saturation temperature given the pressure.
 
virtual double satPressure (double t)
 Return the saturation pressure given the temperature.
 
virtual double vaporFraction () const
 Return the fraction of vapor at the current conditions.
 
virtual void setState_Tsat (double t, double x)
 Set the state to a saturated system at a particular temperature.
 
virtual void setState_Psat (double p, double x)
 Set the state to a saturated system at a particular pressure.
 
void setState_TPQ (double T, double P, double Q)
 Set the temperature, pressure, and vapor fraction (quality).
 
bool addSpecies (shared_ptr< Species > spec) override
 Add a Species to this Phase.
 
void modifySpecies (size_t k, shared_ptr< Species > spec) override
 Modify the thermodynamic data associated with a species.
 
virtual MultiSpeciesThermospeciesThermo (int k=-1)
 Return a changeable reference to the calculation manager for species reference-state thermodynamic properties.
 
virtual const MultiSpeciesThermospeciesThermo (int k=-1) const
 
void initThermoFile (const string &inputFile, const string &id)
 Initialize a ThermoPhase object using an input file.
 
virtual void initThermo ()
 Initialize the ThermoPhase object after all species have been set up.
 
virtual void setParameters (const AnyMap &phaseNode, const AnyMap &rootNode=AnyMap())
 Set equation of state parameters from an AnyMap phase description.
 
AnyMap parameters (bool withInput=true) const
 Returns the parameters of a ThermoPhase object such that an identical one could be reconstructed using the newThermo(AnyMap&) function.
 
virtual void getSpeciesParameters (const string &name, AnyMap &speciesNode) const
 Get phase-specific parameters of a Species object such that an identical one could be reconstructed and added to this phase.
 
const AnyMapinput () const
 Access input data associated with the phase description.
 
AnyMapinput ()
 
void invalidateCache () override
 Invalidate any cached values which are normally updated only when a change in state is detected.
 
virtual void getdlnActCoeffds (const double dTds, const double *const dXds, double *dlnActCoeffds) const
 Get the change in activity coefficients wrt changes in state (temp, mole fraction, etc) along a line in parameter space or along a line in physical space.
 
virtual void getdlnActCoeffdlnX_diag (double *dlnActCoeffdlnX_diag) const
 Get the array of ln mole fraction derivatives of the log activity coefficients - diagonal component only.
 
virtual void getdlnActCoeffdlnN_diag (double *dlnActCoeffdlnN_diag) const
 Get the array of log species mole number derivatives of the log activity coefficients.
 
virtual void getdlnActCoeffdlnN (const size_t ld, double *const dlnActCoeffdlnN)
 Get the array of derivatives of the log activity coefficients with respect to the log of the species mole numbers.
 
virtual void getdlnActCoeffdlnN_numderiv (const size_t ld, double *const dlnActCoeffdlnN)
 
virtual string report (bool show_thermo=true, double threshold=-1e-14) const
 returns a summary of the state of the phase as a string
 
- Public Member Functions inherited from Phase
 Phase ()=default
 Default constructor.
 
 Phase (const Phase &)=delete
 
Phaseoperator= (const Phase &)=delete
 
virtual bool isPure () const
 Return whether phase represents a pure (single species) substance.
 
virtual bool hasPhaseTransition () const
 Return whether phase represents a substance with phase transitions.
 
virtual bool isCompressible () const
 Return whether phase represents a compressible substance.
 
virtual map< string, size_t > nativeState () const
 Return a map of properties defining the native state of a substance.
 
string nativeMode () const
 Return string acronym representing the native state of a Phase.
 
virtual vector< string > fullStates () const
 Return a vector containing full states defining a phase.
 
virtual vector< string > partialStates () const
 Return a vector of settable partial property sets within a phase.
 
virtual size_t stateSize () const
 Return size of vector defining internal state of the phase.
 
void saveState (vector< double > &state) const
 Save the current internal state of the phase.
 
virtual void saveState (size_t lenstate, double *state) const
 Write to array 'state' the current internal state.
 
void restoreState (const vector< double > &state)
 Restore a state saved on a previous call to saveState.
 
virtual void restoreState (size_t lenstate, const double *state)
 Restore the state of the phase from a previously saved state vector.
 
double molecularWeight (size_t k) const
 Molecular weight of species k.
 
void getMolecularWeights (double *weights) const
 Copy the vector of molecular weights into array weights.
 
const vector< double > & molecularWeights () const
 Return a const reference to the internal vector of molecular weights.
 
const vector< double > & inverseMolecularWeights () const
 Return a const reference to the internal vector of molecular weights.
 
void getCharges (double *charges) const
 Copy the vector of species charges into array charges.
 
virtual void setMolesNoTruncate (const double *const N)
 Set the state of the object with moles in [kmol].
 
double elementalMassFraction (const size_t m) const
 Elemental mass fraction of element m.
 
double elementalMoleFraction (const size_t m) const
 Elemental mole fraction of element m.
 
double charge (size_t k) const
 Dimensionless electrical charge of a single molecule of species k The charge is normalized by the the magnitude of the electron charge.
 
double chargeDensity () const
 Charge density [C/m^3].
 
size_t nDim () const
 Returns the number of spatial dimensions (1, 2, or 3)
 
void setNDim (size_t ndim)
 Set the number of spatial dimensions (1, 2, or 3).
 
virtual bool ready () const
 Returns a bool indicating whether the object is ready for use.
 
int stateMFNumber () const
 Return the State Mole Fraction Number.
 
virtual void invalidateCache ()
 Invalidate any cached values which are normally updated only when a change in state is detected.
 
bool caseSensitiveSpecies () const
 Returns true if case sensitive species names are enforced.
 
void setCaseSensitiveSpecies (bool cflag=true)
 Set flag that determines whether case sensitive species are enforced in look-up operations, for example speciesIndex.
 
vector< double > getCompositionFromMap (const Composition &comp) const
 Converts a Composition to a vector with entries for each species Species that are not specified are set to zero in the vector.
 
void massFractionsToMoleFractions (const double *Y, double *X) const
 Converts a mixture composition from mole fractions to mass fractions.
 
void moleFractionsToMassFractions (const double *X, double *Y) const
 Converts a mixture composition from mass fractions to mole fractions.
 
string name () const
 Return the name of the phase.
 
void setName (const string &nm)
 Sets the string name for the phase.
 
string elementName (size_t m) const
 Name of the element with index m.
 
size_t elementIndex (const string &name) const
 Return the index of element named 'name'.
 
const vector< string > & elementNames () const
 Return a read-only reference to the vector of element names.
 
double atomicWeight (size_t m) const
 Atomic weight of element m.
 
double entropyElement298 (size_t m) const
 Entropy of the element in its standard state at 298 K and 1 bar.
 
int atomicNumber (size_t m) const
 Atomic number of element m.
 
int elementType (size_t m) const
 Return the element constraint type Possible types include:
 
int changeElementType (int m, int elem_type)
 Change the element type of the mth constraint Reassigns an element type.
 
const vector< double > & atomicWeights () const
 Return a read-only reference to the vector of atomic weights.
 
size_t nElements () const
 Number of elements.
 
void checkElementIndex (size_t m) const
 Check that the specified element index is in range.
 
void checkElementArraySize (size_t mm) const
 Check that an array size is at least nElements().
 
double nAtoms (size_t k, size_t m) const
 Number of atoms of element m in species k.
 
size_t speciesIndex (const string &name) const
 Returns the index of a species named 'name' within the Phase object.
 
string speciesName (size_t k) const
 Name of the species with index k.
 
const vector< string > & speciesNames () const
 Return a const reference to the vector of species names.
 
size_t nSpecies () const
 Returns the number of species in the phase.
 
void checkSpeciesIndex (size_t k) const
 Check that the specified species index is in range.
 
void checkSpeciesArraySize (size_t kk) const
 Check that an array size is at least nSpecies().
 
void setMoleFractionsByName (const Composition &xMap)
 Set the species mole fractions by name.
 
void setMoleFractionsByName (const string &x)
 Set the mole fractions of a group of species by name.
 
void setMassFractionsByName (const Composition &yMap)
 Set the species mass fractions by name.
 
void setMassFractionsByName (const string &x)
 Set the species mass fractions by name.
 
void setState_TD (double t, double rho)
 Set the internally stored temperature (K) and density (kg/m^3)
 
Composition getMoleFractionsByName (double threshold=0.0) const
 Get the mole fractions by name.
 
double moleFraction (size_t k) const
 Return the mole fraction of a single species.
 
double moleFraction (const string &name) const
 Return the mole fraction of a single species.
 
Composition getMassFractionsByName (double threshold=0.0) const
 Get the mass fractions by name.
 
double massFraction (size_t k) const
 Return the mass fraction of a single species.
 
double massFraction (const string &name) const
 Return the mass fraction of a single species.
 
void getMoleFractions (double *const x) const
 Get the species mole fraction vector.
 
virtual void setMoleFractions (const double *const x)
 Set the mole fractions to the specified values.
 
virtual void setMoleFractions_NoNorm (const double *const x)
 Set the mole fractions to the specified values without normalizing.
 
void getMassFractions (double *const y) const
 Get the species mass fractions.
 
const double * massFractions () const
 Return a const pointer to the mass fraction array.
 
virtual void setMassFractions (const double *const y)
 Set the mass fractions to the specified values and normalize them.
 
virtual void setMassFractions_NoNorm (const double *const y)
 Set the mass fractions to the specified values without normalizing.
 
virtual void getConcentrations (double *const c) const
 Get the species concentrations (kmol/m^3).
 
virtual double concentration (const size_t k) const
 Concentration of species k.
 
virtual void setConcentrations (const double *const conc)
 Set the concentrations to the specified values within the phase.
 
virtual void setConcentrationsNoNorm (const double *const conc)
 Set the concentrations without ignoring negative concentrations.
 
double temperature () const
 Temperature (K).
 
virtual double electronTemperature () const
 Electron Temperature (K)
 
virtual double density () const
 Density (kg/m^3).
 
virtual double molarDensity () const
 Molar density (kmol/m^3).
 
virtual double molarVolume () const
 Molar volume (m^3/kmol).
 
virtual void setDensity (const double density_)
 Set the internally stored density (kg/m^3) of the phase.
 
virtual void setTemperature (double temp)
 Set the internally stored temperature of the phase (K).
 
virtual void setElectronTemperature (double etemp)
 Set the internally stored electron temperature of the phase (K).
 
double mean_X (const double *const Q) const
 Evaluate the mole-fraction-weighted mean of an array Q.
 
double mean_X (const vector< double > &Q) const
 Evaluate the mole-fraction-weighted mean of an array Q.
 
double meanMolecularWeight () const
 The mean molecular weight. Units: (kg/kmol)
 
double sum_xlogx () const
 Evaluate \( \sum_k X_k \ln X_k \).
 
size_t addElement (const string &symbol, double weight=-12345.0, int atomicNumber=0, double entropy298=ENTROPY298_UNKNOWN, int elem_type=CT_ELEM_TYPE_ABSPOS)
 Add an element.
 
void addSpeciesAlias (const string &name, const string &alias)
 Add a species alias (that is, a user-defined alternative species name).
 
virtual vector< string > findIsomers (const Composition &compMap) const
 Return a vector with isomers names matching a given composition map.
 
virtual vector< string > findIsomers (const string &comp) const
 Return a vector with isomers names matching a given composition string.
 
shared_ptr< Speciesspecies (const string &name) const
 Return the Species object for the named species.
 
shared_ptr< Speciesspecies (size_t k) const
 Return the Species object for species whose index is k.
 
void ignoreUndefinedElements ()
 Set behavior when adding a species containing undefined elements to just skip the species.
 
void addUndefinedElements ()
 Set behavior when adding a species containing undefined elements to add those elements to the phase.
 
void throwUndefinedElements ()
 Set the behavior when adding a species containing undefined elements to throw an exception.
 

Protected Member Functions

virtual void updateThermo () const
 Update the species reference state thermodynamic functions.
 
- Protected Member Functions inherited from ThermoPhase
virtual void getParameters (AnyMap &phaseNode) const
 Store the parameters of a ThermoPhase object such that an identical one could be reconstructed using the newThermo(AnyMap&) function.
 
- Protected Member Functions inherited from Phase
void assertCompressible (const string &setter) const
 Ensure that phase is compressible.
 
void assignDensity (const double density_)
 Set the internally stored constant density (kg/m^3) of the phase.
 
void setMolecularWeight (const int k, const double mw)
 Set the molecular weight of a single species to a given value.
 
virtual void compositionChanged ()
 Apply changes to the state which are needed after the composition changes.
 

Protected Attributes

double m_p0 = -1.0
 Reference state pressure.
 
vector< double > m_h0_RT
 Temporary storage for dimensionless reference state enthalpies.
 
vector< double > m_cp0_R
 Temporary storage for dimensionless reference state heat capacities.
 
vector< double > m_g0_RT
 Temporary storage for dimensionless reference state Gibbs energies.
 
vector< double > m_s0_R
 Temporary storage for dimensionless reference state entropies.
 
vector< double > m_expg0_RT
 
vector< double > m_pp
 Temporary array containing internally calculated partial pressures.
 
- Protected Attributes inherited from ThermoPhase
MultiSpeciesThermo m_spthermo
 Pointer to the calculation manager for species reference-state thermodynamic properties.
 
AnyMap m_input
 Data supplied via setParameters.
 
double m_phi = 0.0
 Stored value of the electric potential for this phase. Units are Volts.
 
bool m_chargeNeutralityNecessary = false
 Boolean indicating whether a charge neutrality condition is a necessity.
 
int m_ssConvention = cSS_CONVENTION_TEMPERATURE
 Contains the standard state convention.
 
double m_tlast = 0.0
 last value of the temperature processed by reference state
 
- Protected Attributes inherited from Phase
ValueCache m_cache
 Cached for saved calculations within each ThermoPhase.
 
size_t m_kk = 0
 Number of species in the phase.
 
size_t m_ndim = 3
 Dimensionality of the phase.
 
vector< double > m_speciesComp
 Atomic composition of the species.
 
vector< double > m_speciesCharge
 Vector of species charges. length m_kk.
 
map< string, shared_ptr< Species > > m_species
 
UndefElement::behavior m_undefinedElementBehavior = UndefElement::add
 Flag determining behavior when adding species with an undefined element.
 
bool m_caseSensitiveSpecies = false
 Flag determining whether case sensitive species names are enforced.
 

Constructor & Destructor Documentation

◆ IdealGasPhase()

IdealGasPhase ( const string &  inputFile = "",
const string &  id = "" 
)
explicit

Construct and initialize an IdealGasPhase ThermoPhase object directly from an input file.

Parameters
inputFileName of the input file containing the phase definition to set up the object. If blank, an empty phase will be created.
idID of the phase in the input file. Defaults to the empty string.

Definition at line 18 of file IdealGasPhase.cpp.

Member Function Documentation

◆ type()

string type ( ) const
inlineoverridevirtual

String indicating the thermodynamic model implemented.

Usually corresponds to the name of the derived class, less any suffixes such as "Phase", TP", "VPSS", etc.

Since
Starting in Cantera 3.0, the name returned by this method corresponds to the canonical name used in the YAML input format.

Reimplemented from Phase.

Reimplemented in PlasmaPhase.

Definition at line 263 of file IdealGasPhase.h.

◆ isIdeal()

bool isIdeal ( ) const
inlineoverridevirtual

Boolean indicating whether phase is ideal.

Reimplemented from ThermoPhase.

Definition at line 267 of file IdealGasPhase.h.

◆ phaseOfMatter()

string phaseOfMatter ( ) const
inlineoverridevirtual

String indicating the mechanical phase of the matter in this Phase.

For the IdealGasPhase, this string is always gas.

Reimplemented from ThermoPhase.

Definition at line 275 of file IdealGasPhase.h.

◆ enthalpy_mole()

double enthalpy_mole ( ) const
inlineoverridevirtual

Return the Molar enthalpy. Units: J/kmol.

For an ideal gas mixture,

\[ \hat h(T) = \sum_k X_k \hat h^0_k(T), \]

and is a function only of temperature. The standard-state pure-species enthalpies \( \hat h^0_k(T) \) are computed by the species thermodynamic property manager.

See also
MultiSpeciesThermo

Reimplemented from ThermoPhase.

Reimplemented in PlasmaPhase.

Definition at line 294 of file IdealGasPhase.h.

◆ entropy_mole()

double entropy_mole ( ) const
overridevirtual

Molar entropy.

Units: J/kmol/K. For an ideal gas mixture,

\[ \hat s(T, P) = \sum_k X_k \hat s^0_k(T) - \hat R \ln \frac{P}{P^0}. \]

The reference-state pure-species entropies \( \hat s^0_k(T) \) are computed by the species thermodynamic property manager.

See also
MultiSpeciesThermo

Reimplemented from ThermoPhase.

Reimplemented in PlasmaPhase.

Definition at line 25 of file IdealGasPhase.cpp.

◆ cp_mole()

double cp_mole ( ) const
overridevirtual

Molar heat capacity at constant pressure.

Units: J/kmol/K. For an ideal gas mixture,

\[ \hat c_p(t) = \sum_k \hat c^0_{p,k}(T). \]

The reference-state pure-species heat capacities \( \hat c^0_{p,k}(T) \) are computed by the species thermodynamic property manager.

See also
MultiSpeciesThermo

Reimplemented from ThermoPhase.

Reimplemented in PlasmaPhase.

Definition at line 30 of file IdealGasPhase.cpp.

◆ cv_mole()

double cv_mole ( ) const
overridevirtual

Molar heat capacity at constant volume.

Units: J/kmol/K. For an ideal gas mixture,

\[ \hat c_v = \hat c_p - \hat R. \]

Reimplemented from ThermoPhase.

Definition at line 35 of file IdealGasPhase.cpp.

◆ pressure()

double pressure ( ) const
inlineoverridevirtual

Pressure.

Units: Pa. For an ideal gas mixture,

\[ P = n \hat R T. \]

Reimplemented from Phase.

Definition at line 338 of file IdealGasPhase.h.

◆ setPressure()

void setPressure ( double  p)
inlineoverridevirtual

Set the pressure at constant temperature and composition.

Units: Pa. This method is implemented by setting the mass density to

\[ \rho = \frac{P \overline W}{\hat R T }. \]

Parameters
pPressure (Pa)

Reimplemented from Phase.

Definition at line 352 of file IdealGasPhase.h.

◆ setState_DP()

void setState_DP ( double  rho,
double  p 
)
inlineoverridevirtual

Set the density and pressure at constant composition.

Units: kg/m^3, Pa. This method is implemented by setting the density to the input value and setting the temperature to

\[ T = \frac{P \overline W}{\hat R \rho}. \]

Parameters
rhoDensity (kg/m^3)
pPressure (Pa)
Since
New in Cantera 3.0.

Reimplemented from ThermoPhase.

Definition at line 369 of file IdealGasPhase.h.

◆ isothermalCompressibility()

double isothermalCompressibility ( ) const
inlineoverridevirtual

Returns the isothermal compressibility. Units: 1/Pa.

The isothermal compressibility is defined as

\[ \kappa_T = -\frac{1}{v}\left(\frac{\partial v}{\partial P}\right)_T \]

For ideal gases it's equal to the inverse of the pressure

Reimplemented from ThermoPhase.

Definition at line 386 of file IdealGasPhase.h.

◆ thermalExpansionCoeff()

double thermalExpansionCoeff ( ) const
inlineoverridevirtual

Return the volumetric thermal expansion coefficient. Units: 1/K.

The thermal expansion coefficient is defined as

\[ \beta = \frac{1}{v}\left(\frac{\partial v}{\partial T}\right)_P \]

For ideal gases, it's equal to the inverse of the temperature.

Reimplemented from ThermoPhase.

Definition at line 398 of file IdealGasPhase.h.

◆ soundSpeed()

double soundSpeed ( ) const
overridevirtual

Return the speed of sound. Units: m/s.

The speed of sound is defined as

\[ c = \sqrt{\left(\frac{\partial P}{\partial\rho}\right)_s} \]

Reimplemented from ThermoPhase.

Definition at line 40 of file IdealGasPhase.cpp.

◆ getActivityConcentrations()

void getActivityConcentrations ( double *  c) const
inlineoverridevirtual

This method returns the array of generalized concentrations.

For an ideal gas mixture, these are simply the actual concentrations.

Parameters
cOutput array of generalized concentrations. The units depend upon the implementation of the reaction rate expressions within the phase.

Reimplemented from ThermoPhase.

Definition at line 441 of file IdealGasPhase.h.

◆ standardConcentration()

double standardConcentration ( size_t  k = 0) const
overridevirtual

Returns the standard concentration \( C^0_k \), which is used to normalize the generalized concentration.

This is defined as the concentration by which the generalized concentration is normalized to produce the activity. In many cases, this quantity will be the same for all species in a phase. Since the activity for an ideal gas mixture is simply the mole fraction, for an ideal gas \( C^0_k = P/\hat R T \).

Parameters
kOptional parameter indicating the species. The default is to assume this refers to species 0.
Returns
Returns the standard Concentration in units of m3 kmol-1.

Reimplemented from ThermoPhase.

Definition at line 46 of file IdealGasPhase.cpp.

◆ getActivityCoefficients()

void getActivityCoefficients ( double *  ac) const
overridevirtual

Get the array of non-dimensional activity coefficients at the current solution temperature, pressure, and solution concentration.

For ideal gases, the activity coefficients are all equal to one.

Parameters
acOutput vector of activity coefficients. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 51 of file IdealGasPhase.cpp.

◆ getChemPotentials()

void getChemPotentials ( double *  mu) const
overridevirtual

Get the species chemical potentials. Units: J/kmol.

This function returns a vector of chemical potentials of the species in solution at the current temperature, pressure and mole fraction of the solution.

Parameters
muOutput vector of species chemical potentials. Length: m_kk. Units: J/kmol

Reimplemented from ThermoPhase.

Reimplemented in PlasmaPhase.

Definition at line 69 of file IdealGasPhase.cpp.

◆ getPartialMolarEnthalpies()

void getPartialMolarEnthalpies ( double *  hbar) const
overridevirtual

Returns an array of partial molar enthalpies for the species in the mixture.

Units (J/kmol)

Parameters
hbarOutput vector of species partial molar enthalpies. Length: m_kk. units are J/kmol.

Reimplemented from ThermoPhase.

Reimplemented in PlasmaPhase.

Definition at line 78 of file IdealGasPhase.cpp.

◆ getPartialMolarEntropies()

void getPartialMolarEntropies ( double *  sbar) const
overridevirtual

Returns an array of partial molar entropies of the species in the solution.

Units: J/kmol/K.

Parameters
sbarOutput vector of species partial molar entropies. Length = m_kk. units are J/kmol/K.

Reimplemented from ThermoPhase.

Reimplemented in PlasmaPhase.

Definition at line 84 of file IdealGasPhase.cpp.

◆ getPartialMolarIntEnergies()

void getPartialMolarIntEnergies ( double *  ubar) const
overridevirtual

Return an array of partial molar internal energies for the species in the mixture.

Units: J/kmol.

Parameters
ubarOutput vector of species partial molar internal energies. Length = m_kk. units are J/kmol.

Reimplemented from ThermoPhase.

Reimplemented in PlasmaPhase.

Definition at line 95 of file IdealGasPhase.cpp.

◆ getPartialMolarCp()

void getPartialMolarCp ( double *  cpbar) const
overridevirtual

Return an array of partial molar heat capacities for the species in the mixture.

Units: J/kmol/K

Parameters
cpbarOutput vector of species partial molar heat capacities at constant pressure. Length = m_kk. units are J/kmol/K.

Reimplemented from ThermoPhase.

Definition at line 103 of file IdealGasPhase.cpp.

◆ getPartialMolarVolumes()

void getPartialMolarVolumes ( double *  vbar) const
overridevirtual

Return an array of partial molar volumes for the species in the mixture.

Units: m^3/kmol.

Parameters
vbarOutput vector of species partial molar volumes. Length = m_kk. units are m^3/kmol.

Reimplemented from ThermoPhase.

Definition at line 109 of file IdealGasPhase.cpp.

◆ getStandardChemPotentials()

void getStandardChemPotentials ( double *  mu) const
overridevirtual

Get the array of chemical potentials at unit activity for the species at their standard states at the current T and P of the solution.

These are the standard state chemical potentials \( \mu^0_k(T,P) \). The values are evaluated at the current temperature and pressure of the solution

Parameters
muOutput vector of chemical potentials. Length: m_kk.

Reimplemented from ThermoPhase.

Reimplemented in PlasmaPhase.

Definition at line 58 of file IdealGasPhase.cpp.

◆ getEnthalpy_RT()

void getEnthalpy_RT ( double *  hrt) const
overridevirtual

Get the nondimensional Enthalpy functions for the species at their standard states at the current T and P of the solution.

Parameters
hrtOutput vector of nondimensional standard state enthalpies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 119 of file IdealGasPhase.cpp.

◆ getEntropy_R()

void getEntropy_R ( double *  sr) const
overridevirtual

Get the array of nondimensional Entropy functions for the standard state species at the current T and P of the solution.

Parameters
srOutput vector of nondimensional standard state entropies. Length: m_kk.

Reimplemented from ThermoPhase.

Reimplemented in PlasmaPhase.

Definition at line 125 of file IdealGasPhase.cpp.

◆ getGibbs_RT()

void getGibbs_RT ( double *  grt) const
overridevirtual

Get the nondimensional Gibbs functions for the species in their standard states at the current T and P of the solution.

Parameters
grtOutput vector of nondimensional standard state Gibbs free energies. Length: m_kk.

Reimplemented from ThermoPhase.

Reimplemented in PlasmaPhase.

Definition at line 135 of file IdealGasPhase.cpp.

◆ getPureGibbs()

void getPureGibbs ( double *  gpure) const
overridevirtual

Get the Gibbs functions for the standard state of the species at the current T and P of the solution.

Units are Joules/kmol

Parameters
gpureOutput vector of standard state Gibbs free energies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 145 of file IdealGasPhase.cpp.

◆ getIntEnergy_RT()

void getIntEnergy_RT ( double *  urt) const
overridevirtual

Returns the vector of nondimensional Internal Energies of the standard state species at the current T and P of the solution.

Parameters
urtoutput vector of nondimensional standard state internal energies of the species. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 155 of file IdealGasPhase.cpp.

◆ getCp_R()

void getCp_R ( double *  cpr) const
overridevirtual

Get the nondimensional Heat Capacities at constant pressure for the species standard states at the current T and P of the solution.

Parameters
cprOutput vector of nondimensional standard state heat capacities. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 160 of file IdealGasPhase.cpp.

◆ getStandardVolumes()

void getStandardVolumes ( double *  vol) const
overridevirtual

Get the molar volumes of the species standard states at the current T and P of the solution.

units = m^3 / kmol

Parameters
volOutput vector containing the standard state volumes. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 166 of file IdealGasPhase.cpp.

◆ getEnthalpy_RT_ref()

void getEnthalpy_RT_ref ( double *  hrt) const
overridevirtual

Returns the vector of nondimensional enthalpies of the reference state at the current temperature of the solution and the reference pressure for the species.

Parameters
hrtOutput vector containing the nondimensional reference state enthalpies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 176 of file IdealGasPhase.cpp.

◆ getGibbs_RT_ref()

void getGibbs_RT_ref ( double *  grt) const
overridevirtual

Returns the vector of nondimensional Gibbs Free Energies of the reference state at the current temperature of the solution and the reference pressure for the species.

Parameters
grtOutput vector containing the nondimensional reference state Gibbs Free energies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 182 of file IdealGasPhase.cpp.

◆ getGibbs_ref()

void getGibbs_ref ( double *  g) const
overridevirtual

Returns the vector of the Gibbs function of the reference state at the current temperature of the solution and the reference pressure for the species.

Parameters
gOutput vector containing the reference state Gibbs Free energies. Length: m_kk. Units: J/kmol.

Reimplemented from ThermoPhase.

Reimplemented in PlasmaPhase.

Definition at line 188 of file IdealGasPhase.cpp.

◆ getEntropy_R_ref()

void getEntropy_R_ref ( double *  er) const
overridevirtual

Returns the vector of nondimensional entropies of the reference state at the current temperature of the solution and the reference pressure for each species.

Parameters
erOutput vector containing the nondimensional reference state entropies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 194 of file IdealGasPhase.cpp.

◆ getIntEnergy_RT_ref()

void getIntEnergy_RT_ref ( double *  urt) const
overridevirtual

Returns the vector of nondimensional internal Energies of the reference state at the current temperature of the solution and the reference pressure for each species.

Parameters
urtOutput vector of nondimensional reference state internal energies of the species. Length: m_kk

Reimplemented from ThermoPhase.

Definition at line 200 of file IdealGasPhase.cpp.

◆ getCp_R_ref()

void getCp_R_ref ( double *  cprt) const
overridevirtual

Returns the vector of nondimensional constant pressure heat capacities of the reference state at the current temperature of the solution and reference pressure for each species.

Parameters
cprtOutput vector of nondimensional reference state heat capacities at constant pressure for the species. Length: m_kk

Reimplemented from ThermoPhase.

Definition at line 208 of file IdealGasPhase.cpp.

◆ getStandardVolumes_ref()

void getStandardVolumes_ref ( double *  vol) const
overridevirtual

Get the molar volumes of the species reference states at the current T and P_ref of the solution.

units = m^3 / kmol

Parameters
volOutput vector containing the standard state volumes. Length: m_kk.

Reimplemented from ThermoPhase.

Reimplemented in PlasmaPhase.

Definition at line 214 of file IdealGasPhase.cpp.

◆ enthalpy_RT_ref()

const vector< double > & enthalpy_RT_ref ( ) const
inline

Returns a reference to the dimensionless reference state enthalpy vector.

This function is part of the layer that checks/recalculates the reference state thermo functions.

Definition at line 515 of file IdealGasPhase.h.

◆ gibbs_RT_ref()

const vector< double > & gibbs_RT_ref ( ) const
inline

Returns a reference to the dimensionless reference state Gibbs free energy vector.

This function is part of the layer that checks/recalculates the reference state thermo functions.

Definition at line 525 of file IdealGasPhase.h.

◆ entropy_R_ref()

const vector< double > & entropy_R_ref ( ) const
inline

Returns a reference to the dimensionless reference state Entropy vector.

This function is part of the layer that checks/recalculates the reference state thermo functions.

Definition at line 535 of file IdealGasPhase.h.

◆ cp_R_ref()

const vector< double > & cp_R_ref ( ) const
inline

Returns a reference to the dimensionless reference state Heat Capacity vector.

This function is part of the layer that checks/recalculates the reference state thermo functions.

Definition at line 545 of file IdealGasPhase.h.

◆ addSpecies()

bool addSpecies ( shared_ptr< Species spec)
overridevirtual

Add a Species to this Phase.

Returns true if the species was successfully added, or false if the species was ignored.

Derived classes which need to size arrays according to the number of species should overload this method. The derived class implementation should call the base class method, and, if this returns true (indicating that the species has been added), adjust their array sizes accordingly.

See also
ignoreUndefinedElements addUndefinedElements throwUndefinedElements

Reimplemented from Phase.

Reimplemented in PlasmaPhase.

Definition at line 222 of file IdealGasPhase.cpp.

◆ setToEquilState()

void setToEquilState ( const double *  mu_RT)
overridevirtual

This method is used by the ChemEquil equilibrium solver.

It sets the state such that the chemical potentials satisfy

\[ \frac{\mu_k}{\hat R T} = \sum_m A_{k,m} \left(\frac{\lambda_m} {\hat R T}\right) \]

where \( \lambda_m \) is the element potential of element m. The temperature is unchanged. Any phase (ideal or not) that implements this method can be equilibrated by ChemEquil.

Parameters
mu_RTInput vector of dimensionless chemical potentials The length is equal to nSpecies().

Reimplemented from ThermoPhase.

Definition at line 239 of file IdealGasPhase.cpp.

◆ updateThermo()

void updateThermo ( ) const
protectedvirtual

Update the species reference state thermodynamic functions.

This method is called each time a thermodynamic property is requested, to check whether the internal species properties within the object need to be updated. Currently, this updates the species thermo polynomial values for the current value of the temperature. A check is made to see if the temperature has changed since the last evaluation. This object does not contain any persistent data that depends on the concentration, that needs to be updated. The state object modifies its concentration dependent information at the time the setMoleFractions() (or equivalent) call is made.

Reimplemented in PlasmaPhase.

Definition at line 267 of file IdealGasPhase.cpp.

Member Data Documentation

◆ m_p0

double m_p0 = -1.0
protected

Reference state pressure.

Value of the reference state pressure in Pascals. All species must have the same reference state pressure.

Definition at line 561 of file IdealGasPhase.h.

◆ m_h0_RT

vector<double> m_h0_RT
mutableprotected

Temporary storage for dimensionless reference state enthalpies.

Definition at line 564 of file IdealGasPhase.h.

◆ m_cp0_R

vector<double> m_cp0_R
mutableprotected

Temporary storage for dimensionless reference state heat capacities.

Definition at line 567 of file IdealGasPhase.h.

◆ m_g0_RT

vector<double> m_g0_RT
mutableprotected

Temporary storage for dimensionless reference state Gibbs energies.

Definition at line 570 of file IdealGasPhase.h.

◆ m_s0_R

vector<double> m_s0_R
mutableprotected

Temporary storage for dimensionless reference state entropies.

Definition at line 573 of file IdealGasPhase.h.

◆ m_expg0_RT

vector<double> m_expg0_RT
mutableprotected

Definition at line 575 of file IdealGasPhase.h.

◆ m_pp

vector<double> m_pp
mutableprotected

Temporary array containing internally calculated partial pressures.

Definition at line 578 of file IdealGasPhase.h.


The documentation for this class was generated from the following files: