Cantera  3.1.0a1
Loading...
Searching...
No Matches
Sim1D Class Reference

One-dimensional simulations. More...

#include <Sim1D.h>

Inheritance diagram for Sim1D:
[legend]

Detailed Description

One-dimensional simulations.

Class Sim1D extends class OneDim by storing the solution vector, and by adding a hybrid Newton/time-stepping solver.

Definition at line 21 of file Sim1D.h.

Public Member Functions

 Sim1D ()
 Default constructor.
 
 Sim1D (vector< shared_ptr< Domain1D > > &domains)
 Standard constructor.
 
void setTimeStep (double stepsize, size_t n, const int *tsteps)
 
void solve (int loglevel=0, bool refine_grid=true)
 
void eval (double rdt=-1.0, int count=1)
 
void getResidual (double rdt, double *resid)
 
int refine (int loglevel=0)
 Refine the grid in all domains.
 
int setFixedTemperature (double t)
 Add node for fixed temperature point of freely propagating flame.
 
double fixedTemperature ()
 Return temperature at the point used to fix the flame location.
 
double fixedTemperatureLocation ()
 Return location of the point where temperature is fixed.
 
void setRefineCriteria (int dom=-1, double ratio=10.0, double slope=0.8, double curve=0.8, double prune=-0.1)
 Set grid refinement criteria.
 
vector< double > getRefineCriteria (int dom)
 Get the grid refinement criteria.
 
void setMaxGridPoints (int dom, int npoints)
 Set the maximum number of grid points in the domain.
 
size_t maxGridPoints (size_t dom)
 Get the maximum number of grid points in this domain.
 
void setGridMin (int dom, double gridmin)
 Set the minimum grid spacing in the specified domain(s).
 
void restoreTimeSteppingSolution ()
 Set the current solution vector to the last successful time-stepping solution.
 
void restoreSteadySolution ()
 Set the current solution vector and grid to the last successful steady- state solution.
 
void getInitialSoln ()
 
double jacobian (int i, int j)
 
void evalSSJacobian ()
 
void solveAdjoint (const double *b, double *lambda)
 Solve the equation \( J^T \lambda = b \).
 
void resize () override
 Call after one or more grids has changed size, for example after being refined.
 
void setSteadyCallback (Func1 *callback)
 Set a function that will be called after each successful steady-state solve, before regridding.
 
Setting initial values

These methods are used to set the initial values of solution components.

void setInitialGuess (const string &component, vector< double > &locs, vector< double > &vals)
 Set initial guess for one component for all domains.
 
void setValue (size_t dom, size_t comp, size_t localPoint, double value)
 Set a single value in the solution vector.
 
double value (size_t dom, size_t comp, size_t localPoint) const
 Get one entry in the solution vector.
 
double workValue (size_t dom, size_t comp, size_t localPoint) const
 
void setProfile (size_t dom, size_t comp, const vector< double > &pos, const vector< double > &values)
 Specify a profile for one component of one domain.
 
void setFlatProfile (size_t dom, size_t comp, double v)
 Set component 'comp' of domain 'dom' to value 'v' at all points.
 
Logging, saving and restoring of solutions
void show (std::ostream &s)
 Output information on current solution for all domains to stream.
 
void show ()
 Show logging information on current solution for all domains.
 
void save (const string &fname, const string &name, const string &desc, bool overwrite=false, int compression=0, const string &basis="")
 Save current simulation data to a container file or CSV format.
 
void saveResidual (const string &fname, const string &name, const string &desc, bool overwrite=false, int compression=0)
 Save the residual of the current solution to a container file.
 
AnyMap restore (const string &fname, const string &name)
 Retrieve data and settings from a previously saved simulation.
 
- Public Member Functions inherited from OneDim
 OneDim (vector< shared_ptr< Domain1D > > &domains)
 Construct a OneDim container for the domains in the list domains.
 
 OneDim (const OneDim &)=delete
 
OneDimoperator= (const OneDim &)=delete
 
void addDomain (shared_ptr< Domain1D > d)
 Add a domain. Domains are added left-to-right.
 
MultiJacjacobian ()
 Return a reference to the Jacobian evaluator of an OneDim object.
 
MultiNewtonnewton ()
 Return a reference to the Newton iterator.
 
int solve (double *x0, double *x1, int loglevel)
 Solve F(x) = 0, where F(x) is the multi-domain residual function.
 
size_t nDomains () const
 Number of domains.
 
Domain1Ddomain (size_t i) const
 Return a reference to domain i.
 
size_t domainIndex (const string &name)
 
void checkDomainIndex (size_t n) const
 Check that the specified domain index is in range.
 
void checkDomainArraySize (size_t nn) const
 Check that an array size is at least nDomains().
 
size_t start (size_t i) const
 The index of the start of domain i in the solution vector.
 
size_t size () const
 Total solution vector length;.
 
Domain1Dleft ()
 Pointer to left-most domain (first added).
 
Domain1Dright ()
 Pointer to right-most domain (last added).
 
size_t nVars (size_t jg)
 Number of solution components at global point jg.
 
size_t loc (size_t jg)
 Location in the solution vector of the first component of global point jg.
 
std::tuple< string, size_t, string > component (size_t i)
 Return the domain, local point index, and component name for the i-th component of the global solution vector.
 
size_t bandwidth () const
 Jacobian bandwidth.
 
void init ()
 Initialize all domains.
 
size_t points ()
 Total number of points.
 
double ssnorm (double *x, double *r)
 Steady-state max norm (infinity norm) of the residual evaluated using solution x.
 
double rdt () const
 Reciprocal of the time step.
 
void initTimeInteg (double dt, double *x)
 Prepare for time stepping beginning with solution x and timestep dt.
 
bool transient () const
 True if transient mode.
 
bool steady () const
 True if steady mode.
 
void setSteadyMode ()
 Prepare to solve the steady-state problem.
 
void eval (size_t j, double *x, double *r, double rdt=-1.0, int count=1)
 Evaluate the multi-domain residual function.
 
Domain1DpointDomain (size_t i)
 Return a pointer to the domain global point i belongs to.
 
virtual void resize ()
 Call after one or more grids has changed size, for example after being refined.
 
vector< int > & transientMask ()
 
double timeStep (int nsteps, double dt, double *x, double *r, int loglevel)
 Take time steps using Backward Euler.
 
void resetBadValues (double *x)
 
void writeStats (int printTime=1)
 Write statistics about the number of iterations and Jacobians at each grid level.
 
void setMinTimeStep (double tmin)
 
void setMaxTimeStep (double tmax)
 
void setTimeStepFactor (double tfactor)
 
void setMaxTimeStepCount (int nmax)
 Set the maximum number of timeteps allowed before successful steady-state solve.
 
int maxTimeStepCount () const
 Return the maximum number of timeteps allowed before successful steady-state solve.
 
void setJacAge (int ss_age, int ts_age=-1)
 
void saveStats ()
 Save statistics on function and Jacobian evaluation, and reset the counters.
 
void clearStats ()
 Clear saved statistics.
 
const vector< size_t > & gridSizeStats ()
 Return total grid size in each call to solve()
 
const vector< double > & jacobianTimeStats ()
 Return CPU time spent evaluating Jacobians in each call to solve()
 
const vector< double > & evalTimeStats ()
 Return CPU time spent on non-Jacobian function evaluations in each call to solve()
 
const vector< int > & jacobianCountStats ()
 Return number of Jacobian evaluations made in each call to solve()
 
const vector< int > & evalCountStats ()
 Return number of non-Jacobian function evaluations made in each call to solve()
 
const vector< int > & timeStepStats ()
 Return number of time steps taken in each call to solve()
 
void setInterrupt (Func1 *interrupt)
 Set a function that will be called every time eval is called.
 
void setTimeStepCallback (Func1 *callback)
 Set a function that will be called after each successful timestep.
 

Protected Attributes

vector< double > m_xlast_ts
 the solution vector after the last successful timestepping
 
vector< double > m_xlast_ss
 the solution vector after the last successful steady-state solve (stored before grid refinement)
 
vector< vector< double > > m_grid_last_ss
 the grids for each domain after the last successful steady-state solve (stored before grid refinement)
 
vector< double > m_xnew
 a work array used to hold the residual or the new solution
 
double m_tstep
 timestep
 
vector< int > m_steps
 array of number of steps to take before re-attempting the steady-state solution
 
Func1m_steady_callback
 User-supplied function called after a successful steady-state solve.
 
- Protected Attributes inherited from OneDim
double m_tmin = 1e-16
 minimum timestep size
 
double m_tmax = 1e+08
 maximum timestep size
 
double m_tfactor = 0.5
 factor time step is multiplied by if time stepping fails ( < 1 )
 
shared_ptr< vector< double > > m_state
 Solution vector.
 
unique_ptr< MultiJacm_jac
 Jacobian evaluator.
 
unique_ptr< MultiNewtonm_newt
 Newton iterator.
 
double m_rdt = 0.0
 reciprocal of time step
 
bool m_jac_ok = false
 if true, Jacobian is current
 
size_t m_bw = 0
 Jacobian bandwidth.
 
size_t m_size = 0
 solution vector size
 
vector< shared_ptr< Domain1D > > m_dom
 
vector< shared_ptr< Domain1D > > m_connect
 
vector< shared_ptr< Domain1D > > m_bulk
 
bool m_init = false
 
vector< size_t > m_nvars
 
vector< size_t > m_loc
 
vector< int > m_mask
 
size_t m_pts = 0
 
int m_ss_jac_age = 20
 
int m_ts_jac_age = 20
 
Func1m_interrupt = nullptr
 Function called at the start of every call to eval.
 
Func1m_time_step_callback = nullptr
 User-supplied function called after each successful timestep.
 
int m_nsteps = 0
 Number of time steps taken in the current call to solve()
 
int m_nsteps_max = 500
 Maximum number of timesteps allowed per call to solve()
 

Private Member Functions

void finalize ()
 Calls method _finalize in each domain.
 
int newtonSolve (int loglevel)
 Wrapper around the Newton solver.
 

Additional Inherited Members

- Protected Member Functions inherited from OneDim
void evalSSJacobian (double *x, double *xnew)
 

Constructor & Destructor Documentation

◆ Sim1D() [1/2]

Sim1D ( )
inline

Default constructor.

This constructor is provided to make the class default-constructible, but is not meant to be used in most applications. Use the next constructor

Definition at line 29 of file Sim1D.h.

◆ Sim1D() [2/2]

Sim1D ( vector< shared_ptr< Domain1D > > &  domains)

Standard constructor.

Parameters
domainsA vector of shared pointers to the domains to be linked together. The domain pointers must be entered in left-to-right order — that is, the pointer to the leftmost domain is domain[0], the pointer to the domain to its right is domain[1], etc.

Definition at line 25 of file Sim1D.cpp.

Member Function Documentation

◆ setInitialGuess()

void setInitialGuess ( const string &  component,
vector< double > &  locs,
vector< double > &  vals 
)

Set initial guess for one component for all domains.

Parameters
componentcomponent name
locsA vector of relative positions, beginning with 0.0 at the left of the domain, and ending with 1.0 at the right of the domain.
valsA vector of values corresponding to the relative position locations.

Definition at line 41 of file Sim1D.cpp.

◆ setValue()

void setValue ( size_t  dom,
size_t  comp,
size_t  localPoint,
double  value 
)

Set a single value in the solution vector.

Parameters
domdomain number, beginning with 0 for the leftmost domain.
compcomponent number
localPointgrid point within the domain, beginning with 0 for the leftmost grid point in the domain.
valuethe value.

Definition at line 55 of file Sim1D.cpp.

◆ value()

double value ( size_t  dom,
size_t  comp,
size_t  localPoint 
) const

Get one entry in the solution vector.

Parameters
domdomain number, beginning with 0 for the leftmost domain.
compcomponent number
localPointgrid point within the domain, beginning with 0 for the leftmost grid point in the domain.

Definition at line 63 of file Sim1D.cpp.

◆ workValue()

double workValue ( size_t  dom,
size_t  comp,
size_t  localPoint 
) const

Definition at line 71 of file Sim1D.cpp.

◆ setProfile()

void setProfile ( size_t  dom,
size_t  comp,
const vector< double > &  pos,
const vector< double > &  values 
)

Specify a profile for one component of one domain.

Parameters
domdomain number, beginning with 0 for the leftmost domain.
compcomponent number
posA vector of relative positions, beginning with 0.0 at the left of the domain, and ending with 1.0 at the right of the domain.
valuesA vector of values corresponding to the relative position locations.

Note that the vector pos and values can have lengths different than the number of grid points, but their lengths must be equal. The values at the grid points will be linearly interpolated based on the (pos, values) specification.

Definition at line 79 of file Sim1D.cpp.

◆ setFlatProfile()

void setFlatProfile ( size_t  dom,
size_t  comp,
double  v 
)

Set component 'comp' of domain 'dom' to value 'v' at all points.

Definition at line 324 of file Sim1D.cpp.

◆ show() [1/2]

void show ( std::ostream &  s)

Output information on current solution for all domains to stream.

Parameters
sOutput stream
Since
New in Cantera 3.0.

Definition at line 332 of file Sim1D.cpp.

◆ show() [2/2]

void show ( )

Show logging information on current solution for all domains.

Since
New in Cantera 3.0.

Definition at line 341 of file Sim1D.cpp.

◆ save()

void save ( const string &  fname,
const string &  name,
const string &  desc,
bool  overwrite = false,
int  compression = 0,
const string &  basis = "" 
)

Save current simulation data to a container file or CSV format.

In order to save the content of a Sim1D object, individual domains are converted to SolutionArray objects and saved using the SolutionArray::save() method. For HDF and YAML output, all domains are written to a single container file with shared header information. Simulation settings of individual domains are preserved as meta data of the corresponding SolutionArray objects. For CSV files, only state and auxiliary data of the main 1D domain are saved.

The complete state of the current object can be restored from HDF and YAML container files using the restore() method, while individual domains can be loaded using SolutionArray::restore() for further analysis. While CSV do not contain complete information, they can still be used for setting initial states of individual simulation objects for some Cantera API's.

Parameters
fnameName of output file (CSV, YAML or HDF)
nameIdentifier of storage location within the container file; this node/group contains header information and multiple subgroups holding domain-specific SolutionArray data (YAML/HDF only)
descCustom comment describing the dataset to be stored (YAML/HDF only)
overwriteForce overwrite if file/name exists; optional (default=false)
compressionCompression level (0-9); optional (default=0; HDF only)
basisOutput mass ("Y"/"mass") or mole ("X"/"mole") fractions; if not specified (default=""), the native basis of the underlying ThermoPhase manager is used -
See also
nativeState (CSV only)

Definition at line 98 of file Sim1D.cpp.

◆ saveResidual()

void saveResidual ( const string &  fname,
const string &  name,
const string &  desc,
bool  overwrite = false,
int  compression = 0 
)

Save the residual of the current solution to a container file.

Parameters
fnameName of output container file
nameIdentifier of solution within the container file
descDescription of the solution
overwriteForce overwrite if name exists; optional (default=false)
compressionCompression level (optional; HDF only)

Definition at line 147 of file Sim1D.cpp.

◆ restore()

AnyMap restore ( const string &  fname,
const string &  name 
)

Retrieve data and settings from a previously saved simulation.

This method restores a simulation object from YAML or HDF data previously saved using the save() method.

Parameters
fnameName of container file (YAML or HDF)
nameIdentifier of location within the container file; this node/group contains header information and subgroups with domain-specific SolutionArray data
Returns
AnyMap containing header information

Definition at line 247 of file Sim1D.cpp.

◆ setTimeStep()

void setTimeStep ( double  stepsize,
size_t  n,
const int *  tsteps 
)

Definition at line 388 of file Sim1D.cpp.

◆ solve()

void solve ( int  loglevel = 0,
bool  refine_grid = true 
)

Definition at line 411 of file Sim1D.cpp.

◆ eval()

void eval ( double  rdt = -1.0,
int  count = 1 
)
inline

Definition at line 177 of file Sim1D.h.

◆ getResidual()

void getResidual ( double  rdt,
double *  resid 
)
inline

Definition at line 182 of file Sim1D.h.

◆ refine()

int refine ( int  loglevel = 0)

Refine the grid in all domains.

Definition at line 522 of file Sim1D.cpp.

◆ setFixedTemperature()

int setFixedTemperature ( double  t)

Add node for fixed temperature point of freely propagating flame.

Definition at line 611 of file Sim1D.cpp.

◆ fixedTemperature()

double fixedTemperature ( )

Return temperature at the point used to fix the flame location.

Definition at line 701 of file Sim1D.cpp.

◆ fixedTemperatureLocation()

double fixedTemperatureLocation ( )

Return location of the point where temperature is fixed.

Definition at line 714 of file Sim1D.cpp.

◆ setRefineCriteria()

void setRefineCriteria ( int  dom = -1,
double  ratio = 10.0,
double  slope = 0.8,
double  curve = 0.8,
double  prune = -0.1 
)

Set grid refinement criteria.

If dom >= 0, then the settings apply only to the specified domain. If dom < 0, the settings are applied to each domain.

See also
Refiner::setCriteria.

Definition at line 727 of file Sim1D.cpp.

◆ getRefineCriteria()

vector< double > getRefineCriteria ( int  dom)

Get the grid refinement criteria.

dom must be greater than or equal to zero (that is, the domain must be specified).

See also
Refiner::getCriteria

Definition at line 741 of file Sim1D.cpp.

◆ setMaxGridPoints()

void setMaxGridPoints ( int  dom,
int  npoints 
)

Set the maximum number of grid points in the domain.

If dom >= 0, then the settings apply only to the specified domain. If dom < 0, the settings are applied to each domain.

See also
Refiner::setMaxPoints.

Definition at line 765 of file Sim1D.cpp.

◆ maxGridPoints()

size_t maxGridPoints ( size_t  dom)

Get the maximum number of grid points in this domain.

See also
Refiner::maxPoints
Parameters
domdomain number, beginning with 0 for the leftmost domain.

Definition at line 778 of file Sim1D.cpp.

◆ setGridMin()

void setGridMin ( int  dom,
double  gridmin 
)

Set the minimum grid spacing in the specified domain(s).

Parameters
domDomain index. If dom == -1, the specified spacing is applied to all domains.
gridminThe minimum allowable grid spacing [m]

Definition at line 752 of file Sim1D.cpp.

◆ restoreTimeSteppingSolution()

void restoreTimeSteppingSolution ( )

Set the current solution vector to the last successful time-stepping solution.

This can be used to examine the solver progress after a failed integration.

Definition at line 352 of file Sim1D.cpp.

◆ restoreSteadySolution()

void restoreSteadySolution ( )

Set the current solution vector and grid to the last successful steady- state solution.

This can be used to examine the solver progress after a failure during grid refinement.

Definition at line 361 of file Sim1D.cpp.

◆ getInitialSoln()

void getInitialSoln ( )

Definition at line 374 of file Sim1D.cpp.

◆ jacobian()

double jacobian ( int  i,
int  j 
)

Definition at line 784 of file Sim1D.cpp.

◆ evalSSJacobian()

void evalSSJacobian ( )

Definition at line 789 of file Sim1D.cpp.

◆ solveAdjoint()

void solveAdjoint ( const double *  b,
double *  lambda 
)

Solve the equation \( J^T \lambda = b \).

Here, \( J = \partial f/\partial x \) is the Jacobian matrix of the system of equations \( f(x,p)=0 \). This can be used to efficiently solve for the sensitivities of a scalar objective function \( g(x,p) \) to a vector of parameters \( p \) by solving:

\[ J^T \lambda = \left( \frac{\partial g}{\partial x} \right)^T \]

for \( \lambda \) and then computing:

\[ \left.\frac{dg}{dp}\right|_{f=0} = \frac{\partial g}{\partial p} - \lambda^T \frac{\partial f}{\partial p} \]

Definition at line 794 of file Sim1D.cpp.

◆ resize()

void resize ( )
overridevirtual

Call after one or more grids has changed size, for example after being refined.

Reimplemented from OneDim.

Definition at line 818 of file Sim1D.cpp.

◆ setSteadyCallback()

void setSteadyCallback ( Func1 callback)
inline

Set a function that will be called after each successful steady-state solve, before regridding.

Intended to be used for observing solver progress for debugging purposes.

Definition at line 272 of file Sim1D.h.

◆ finalize()

void finalize ( )
private

Calls method _finalize in each domain.

Definition at line 381 of file Sim1D.cpp.

◆ newtonSolve()

int newtonSolve ( int  loglevel)
private

Wrapper around the Newton solver.

Returns
0 if successful, -1 on failure

Definition at line 397 of file Sim1D.cpp.

Member Data Documentation

◆ m_xlast_ts

vector<double> m_xlast_ts
protected

the solution vector after the last successful timestepping

Definition at line 278 of file Sim1D.h.

◆ m_xlast_ss

vector<double> m_xlast_ss
protected

the solution vector after the last successful steady-state solve (stored before grid refinement)

Definition at line 282 of file Sim1D.h.

◆ m_grid_last_ss

vector<vector<double> > m_grid_last_ss
protected

the grids for each domain after the last successful steady-state solve (stored before grid refinement)

Definition at line 286 of file Sim1D.h.

◆ m_xnew

vector<double> m_xnew
protected

a work array used to hold the residual or the new solution

Definition at line 289 of file Sim1D.h.

◆ m_tstep

double m_tstep
protected

timestep

Definition at line 292 of file Sim1D.h.

◆ m_steps

vector<int> m_steps
protected

array of number of steps to take before re-attempting the steady-state solution

Definition at line 296 of file Sim1D.h.

◆ m_steady_callback

Func1* m_steady_callback
protected

User-supplied function called after a successful steady-state solve.

Definition at line 299 of file Sim1D.h.


The documentation for this class was generated from the following files: