Class StoichSubstance represents a stoichiometric (fixed composition) incompressible substance. More...
#include <StoichSubstance.h>
Class StoichSubstance represents a stoichiometric (fixed composition) incompressible substance.
This class internally changes the independent degree of freedom from density to pressure. This is necessary because the phase is incompressible. It uses a constant volume approximation.
This class inherits from SingleSpeciesTP. It is assumed that the reference state thermodynamics may be obtained by a pointer to a populated species thermodynamic property manager class (see ThermoPhase::m_spthermo). How to relate pressure changes to the reference state thermodynamics is resolved at this level.
For an incompressible, stoichiometric substance, the molar internal energy is independent of pressure. Since the thermodynamic properties are specified by giving the standard-state enthalpy, the term \( P_0 \hat v \) is subtracted from the specified molar enthalpy to compute the molar internal energy. The entropy is assumed to be independent of the pressure.
The enthalpy function is given by the following relation.
\[ h^o_k(T,P) = h^{ref}_k(T) + \tilde v \left( P - P_{ref} \right) \]
For an incompressible, stoichiometric substance, the molar internal energy is independent of pressure. Since the thermodynamic properties are specified by giving the standard-state enthalpy, the term \( P_{ref} \tilde v \) is subtracted from the specified reference molar enthalpy to compute the molar internal energy.
\[ u^o_k(T,P) = h^{ref}_k(T) - P_{ref} \tilde v \]
The standard state heat capacity and entropy are independent of pressure. The standard state Gibbs free energy is obtained from the enthalpy and entropy functions.
All solution properties are obtained from the standard state species functions, since there is only one species in the phase.
The standard concentration is equal to 1.0. This means that the kinetics operator works on an (activities basis). Since this is a stoichiometric substance, this means that the concentration of this phase drops out of kinetics expressions.
An example of a reaction using this is a sticking coefficient reaction of a substance in an ideal gas phase on a surface with a bulk phase species in this phase. In this case, the rate of progress for this reaction, \( R_s \), may be expressed via the following equation:
\[ R_s = k_s C_{gas} \]
where the units for \( R_s \) are kmol m-2 s-1. \( C_{gas} \) has units of kmol m-3. Therefore, the kinetic rate constant, \( k_s \), has units of m s-1. Nowhere does the concentration of the bulk phase appear in the rate constant expression, since it's a stoichiometric phase and the activity is always equal to 1.0.
Definition at line 88 of file StoichSubstance.h.
Public Member Functions | |
StoichSubstance (const string &infile="", const string &id="") | |
Construct and initialize a StoichSubstance ThermoPhase object directly from an input file. | |
string | type () const override |
String indicating the thermodynamic model implemented. | |
bool | isCompressible () const override |
Return whether phase represents a compressible substance. | |
void | initThermo () override |
Initialize the ThermoPhase object after all species have been set up. | |
void | getSpeciesParameters (const string &name, AnyMap &speciesNode) const override |
Get phase-specific parameters of a Species object such that an identical one could be reconstructed and added to this phase. | |
Mechanical Equation of State | |
double | pressure () const override |
Report the Pressure. Units: Pa. | |
void | setPressure (double p) override |
Set the pressure at constant temperature. Units: Pa. | |
double | isothermalCompressibility () const override |
Returns the isothermal compressibility. Units: 1/Pa. | |
double | thermalExpansionCoeff () const override |
Return the volumetric thermal expansion coefficient. Units: 1/K. | |
Activities, Standard States, and Activity Concentrations | |
This section is largely handled by parent classes, since there is only one species. Therefore, the activity is equal to one. | |
Units | standardConcentrationUnits () const override |
Returns the units of the "standard concentration" for this phase. | |
void | getActivityConcentrations (double *c) const override |
This method returns an array of generalized concentrations. | |
double | standardConcentration (size_t k=0) const override |
Return the standard concentration for the kth species. | |
double | logStandardConc (size_t k=0) const override |
Natural logarithm of the standard concentration of the kth species. | |
void | getStandardChemPotentials (double *mu0) const override |
Get the array of chemical potentials at unit activity for the species at their standard states at the current T and P of the solution. | |
Properties of the Standard State of the Species in the Solution | |
void | getEnthalpy_RT (double *hrt) const override |
Get the nondimensional Enthalpy functions for the species at their standard states at the current T and P of the solution. | |
void | getEntropy_R (double *sr) const override |
Get the array of nondimensional Entropy functions for the standard state species at the current T and P of the solution. | |
void | getGibbs_RT (double *grt) const override |
Get the nondimensional Gibbs functions for the species in their standard states at the current T and P of the solution. | |
void | getCp_R (double *cpr) const override |
Get the nondimensional Heat Capacities at constant pressure for the species standard states at the current T and P of the solution. | |
void | getIntEnergy_RT (double *urt) const override |
Returns the vector of nondimensional Internal Energies of the standard state species at the current T and P of the solution. | |
Thermodynamic Values for the Species Reference States | |
void | getIntEnergy_RT_ref (double *urt) const override |
Returns the vector of nondimensional internal Energies of the reference state at the current temperature of the solution and the reference pressure for each species. | |
Public Member Functions inherited from SingleSpeciesTP | |
SingleSpeciesTP ()=default | |
Base empty constructor. | |
string | type () const override |
String indicating the thermodynamic model implemented. | |
bool | isPure () const override |
Return whether phase represents a pure (single species) substance. | |
bool | addSpecies (shared_ptr< Species > spec) override |
Add a Species to this Phase. | |
double | enthalpy_mole () const override |
Molar enthalpy. Units: J/kmol. | |
double | intEnergy_mole () const override |
Molar internal energy. Units: J/kmol. | |
double | entropy_mole () const override |
Molar entropy. Units: J/kmol/K. | |
double | gibbs_mole () const override |
Molar Gibbs function. Units: J/kmol. | |
double | cp_mole () const override |
Molar heat capacity at constant pressure. Units: J/kmol/K. | |
double | cv_mole () const override |
Molar heat capacity at constant volume. Units: J/kmol/K. | |
void | getActivities (double *a) const override |
Get the array of non-dimensional activities at the current solution temperature, pressure, and solution concentration. | |
void | getActivityCoefficients (double *ac) const override |
Get the array of non-dimensional molar-based activity coefficients at the current solution temperature, pressure, and solution concentration. | |
void | getChemPotentials (double *mu) const override |
Get the array of chemical potentials. | |
void | getPartialMolarEnthalpies (double *hbar) const override |
Get the species partial molar enthalpies. Units: J/kmol. | |
void | getPartialMolarIntEnergies (double *ubar) const override |
Get the species partial molar internal energies. Units: J/kmol. | |
void | getPartialMolarEntropies (double *sbar) const override |
Get the species partial molar entropy. Units: J/kmol K. | |
void | getPartialMolarCp (double *cpbar) const override |
Get the species partial molar Heat Capacities. Units: J/ kmol /K. | |
void | getPartialMolarVolumes (double *vbar) const override |
Get the species partial molar volumes. Units: m^3/kmol. | |
void | getPureGibbs (double *gpure) const override |
Get the Gibbs functions for the standard state of the species at the current T and P of the solution. | |
void | getStandardVolumes (double *vbar) const override |
Get the molar volumes of each species in their standard states at the current T and P of the solution. | |
void | getEnthalpy_RT_ref (double *hrt) const override |
Returns the vector of nondimensional enthalpies of the reference state at the current temperature of the solution and the reference pressure for the species. | |
void | getGibbs_RT_ref (double *grt) const override |
Returns the vector of nondimensional Gibbs Free Energies of the reference state at the current temperature of the solution and the reference pressure for the species. | |
void | getGibbs_ref (double *g) const override |
Returns the vector of the Gibbs function of the reference state at the current temperature of the solution and the reference pressure for the species. | |
void | getEntropy_R_ref (double *er) const override |
Returns the vector of nondimensional entropies of the reference state at the current temperature of the solution and the reference pressure for each species. | |
void | getCp_R_ref (double *cprt) const override |
Returns the vector of nondimensional constant pressure heat capacities of the reference state at the current temperature of the solution and reference pressure for each species. | |
void | setMassFractions (const double *const y) override |
Mass fractions are fixed, with Y[0] = 1.0. | |
void | setMoleFractions (const double *const x) override |
Mole fractions are fixed, with x[0] = 1.0. | |
void | setState_HP (double h, double p, double tol=1e-9) override |
Set the internally stored specific enthalpy (J/kg) and pressure (Pa) of the phase. | |
void | setState_UV (double u, double v, double tol=1e-9) override |
Set the specific internal energy (J/kg) and specific volume (m^3/kg). | |
void | setState_SP (double s, double p, double tol=1e-9) override |
Set the specific entropy (J/kg/K) and pressure (Pa). | |
void | setState_SV (double s, double v, double tol=1e-9) override |
Set the specific entropy (J/kg/K) and specific volume (m^3/kg). | |
Public Member Functions inherited from ThermoPhase | |
ThermoPhase ()=default | |
Constructor. | |
double | RT () const |
Return the Gas Constant multiplied by the current temperature. | |
double | equivalenceRatio () const |
Compute the equivalence ratio for the current mixture from available oxygen and required oxygen. | |
string | type () const override |
String indicating the thermodynamic model implemented. | |
virtual bool | isIdeal () const |
Boolean indicating whether phase is ideal. | |
virtual string | phaseOfMatter () const |
String indicating the mechanical phase of the matter in this Phase. | |
virtual double | refPressure () const |
Returns the reference pressure in Pa. | |
virtual double | minTemp (size_t k=npos) const |
Minimum temperature for which the thermodynamic data for the species or phase are valid. | |
double | Hf298SS (const size_t k) const |
Report the 298 K Heat of Formation of the standard state of one species (J kmol-1) | |
virtual void | modifyOneHf298SS (const size_t k, const double Hf298New) |
Modify the value of the 298 K Heat of Formation of one species in the phase (J kmol-1) | |
virtual void | resetHf298 (const size_t k=npos) |
Restore the original heat of formation of one or more species. | |
virtual double | maxTemp (size_t k=npos) const |
Maximum temperature for which the thermodynamic data for the species are valid. | |
bool | chargeNeutralityNecessary () const |
Returns the chargeNeutralityNecessity boolean. | |
virtual double | soundSpeed () const |
Return the speed of sound. Units: m/s. | |
void | setElectricPotential (double v) |
Set the electric potential of this phase (V). | |
double | electricPotential () const |
Returns the electric potential of this phase (V). | |
virtual int | activityConvention () const |
This method returns the convention used in specification of the activities, of which there are currently two, molar- and molality-based conventions. | |
virtual int | standardStateConvention () const |
This method returns the convention used in specification of the standard state, of which there are currently two, temperature based, and variable pressure based. | |
virtual void | getLnActivityCoefficients (double *lnac) const |
Get the array of non-dimensional molar-based ln activity coefficients at the current solution temperature, pressure, and solution concentration. | |
void | getElectrochemPotentials (double *mu) const |
Get the species electrochemical potentials. | |
virtual void | getStandardVolumes_ref (double *vol) const |
Get the molar volumes of the species reference states at the current T and P_ref of the solution. | |
double | enthalpy_mass () const |
Specific enthalpy. Units: J/kg. | |
double | intEnergy_mass () const |
Specific internal energy. Units: J/kg. | |
double | entropy_mass () const |
Specific entropy. Units: J/kg/K. | |
double | gibbs_mass () const |
Specific Gibbs function. Units: J/kg. | |
double | cp_mass () const |
Specific heat at constant pressure. Units: J/kg/K. | |
double | cv_mass () const |
Specific heat at constant volume. Units: J/kg/K. | |
virtual void | setState_TPX (double t, double p, const double *x) |
Set the temperature (K), pressure (Pa), and mole fractions. | |
virtual void | setState_TPX (double t, double p, const Composition &x) |
Set the temperature (K), pressure (Pa), and mole fractions. | |
virtual void | setState_TPX (double t, double p, const string &x) |
Set the temperature (K), pressure (Pa), and mole fractions. | |
virtual void | setState_TPY (double t, double p, const double *y) |
Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. | |
virtual void | setState_TPY (double t, double p, const Composition &y) |
Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. | |
virtual void | setState_TPY (double t, double p, const string &y) |
Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. | |
virtual void | setState_TP (double t, double p) |
Set the temperature (K) and pressure (Pa) | |
virtual void | setState_ST (double s, double t, double tol=1e-9) |
Set the specific entropy (J/kg/K) and temperature (K). | |
virtual void | setState_TV (double t, double v, double tol=1e-9) |
Set the temperature (K) and specific volume (m^3/kg). | |
virtual void | setState_PV (double p, double v, double tol=1e-9) |
Set the pressure (Pa) and specific volume (m^3/kg). | |
virtual void | setState_UP (double u, double p, double tol=1e-9) |
Set the specific internal energy (J/kg) and pressure (Pa). | |
virtual void | setState_VH (double v, double h, double tol=1e-9) |
Set the specific volume (m^3/kg) and the specific enthalpy (J/kg) | |
virtual void | setState_TH (double t, double h, double tol=1e-9) |
Set the temperature (K) and the specific enthalpy (J/kg) | |
virtual void | setState_SH (double s, double h, double tol=1e-9) |
Set the specific entropy (J/kg/K) and the specific enthalpy (J/kg) | |
virtual void | setState_DP (double rho, double p) |
Set the density (kg/m**3) and pressure (Pa) at constant composition. | |
virtual void | setState (const AnyMap &state) |
Set the state using an AnyMap containing any combination of properties supported by the thermodynamic model. | |
void | setMixtureFraction (double mixFrac, const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar) |
Set the mixture composition according to the mixture fraction = kg fuel / (kg oxidizer + kg fuel) | |
void | setMixtureFraction (double mixFrac, const string &fuelComp, const string &oxComp, ThermoBasis basis=ThermoBasis::molar) |
Set the mixture composition according to the mixture fraction = kg fuel / (kg oxidizer + kg fuel) | |
void | setMixtureFraction (double mixFrac, const Composition &fuelComp, const Composition &oxComp, ThermoBasis basis=ThermoBasis::molar) |
Set the mixture composition according to the mixture fraction = kg fuel / (kg oxidizer + kg fuel) | |
double | mixtureFraction (const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar, const string &element="Bilger") const |
Compute the mixture fraction = kg fuel / (kg oxidizer + kg fuel) for the current mixture given fuel and oxidizer compositions. | |
double | mixtureFraction (const string &fuelComp, const string &oxComp, ThermoBasis basis=ThermoBasis::molar, const string &element="Bilger") const |
Compute the mixture fraction = kg fuel / (kg oxidizer + kg fuel) for the current mixture given fuel and oxidizer compositions. | |
double | mixtureFraction (const Composition &fuelComp, const Composition &oxComp, ThermoBasis basis=ThermoBasis::molar, const string &element="Bilger") const |
Compute the mixture fraction = kg fuel / (kg oxidizer + kg fuel) for the current mixture given fuel and oxidizer compositions. | |
void | setEquivalenceRatio (double phi, const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar) |
Set the mixture composition according to the equivalence ratio. | |
void | setEquivalenceRatio (double phi, const string &fuelComp, const string &oxComp, ThermoBasis basis=ThermoBasis::molar) |
Set the mixture composition according to the equivalence ratio. | |
void | setEquivalenceRatio (double phi, const Composition &fuelComp, const Composition &oxComp, ThermoBasis basis=ThermoBasis::molar) |
Set the mixture composition according to the equivalence ratio. | |
double | equivalenceRatio (const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar) const |
Compute the equivalence ratio for the current mixture given the compositions of fuel and oxidizer. | |
double | equivalenceRatio (const string &fuelComp, const string &oxComp, ThermoBasis basis=ThermoBasis::molar) const |
Compute the equivalence ratio for the current mixture given the compositions of fuel and oxidizer. | |
double | equivalenceRatio (const Composition &fuelComp, const Composition &oxComp, ThermoBasis basis=ThermoBasis::molar) const |
Compute the equivalence ratio for the current mixture given the compositions of fuel and oxidizer. | |
double | stoichAirFuelRatio (const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar) const |
Compute the stoichiometric air to fuel ratio (kg oxidizer / kg fuel) given fuel and oxidizer compositions. | |
double | stoichAirFuelRatio (const string &fuelComp, const string &oxComp, ThermoBasis basis=ThermoBasis::molar) const |
Compute the stoichiometric air to fuel ratio (kg oxidizer / kg fuel) given fuel and oxidizer compositions. | |
double | stoichAirFuelRatio (const Composition &fuelComp, const Composition &oxComp, ThermoBasis basis=ThermoBasis::molar) const |
Compute the stoichiometric air to fuel ratio (kg oxidizer / kg fuel) given fuel and oxidizer compositions. | |
void | equilibrate (const string &XY, const string &solver="auto", double rtol=1e-9, int max_steps=50000, int max_iter=100, int estimate_equil=0, int log_level=0) |
Equilibrate a ThermoPhase object. | |
virtual void | setToEquilState (const double *mu_RT) |
This method is used by the ChemEquil equilibrium solver. | |
virtual bool | compatibleWithMultiPhase () const |
Indicates whether this phase type can be used with class MultiPhase for equilibrium calculations. | |
virtual double | critTemperature () const |
Critical temperature (K). | |
virtual double | critPressure () const |
Critical pressure (Pa). | |
virtual double | critVolume () const |
Critical volume (m3/kmol). | |
virtual double | critCompressibility () const |
Critical compressibility (unitless). | |
virtual double | critDensity () const |
Critical density (kg/m3). | |
virtual double | satTemperature (double p) const |
Return the saturation temperature given the pressure. | |
virtual double | satPressure (double t) |
Return the saturation pressure given the temperature. | |
virtual double | vaporFraction () const |
Return the fraction of vapor at the current conditions. | |
virtual void | setState_Tsat (double t, double x) |
Set the state to a saturated system at a particular temperature. | |
virtual void | setState_Psat (double p, double x) |
Set the state to a saturated system at a particular pressure. | |
void | setState_TPQ (double T, double P, double Q) |
Set the temperature, pressure, and vapor fraction (quality). | |
bool | addSpecies (shared_ptr< Species > spec) override |
Add a Species to this Phase. | |
void | modifySpecies (size_t k, shared_ptr< Species > spec) override |
Modify the thermodynamic data associated with a species. | |
virtual MultiSpeciesThermo & | speciesThermo (int k=-1) |
Return a changeable reference to the calculation manager for species reference-state thermodynamic properties. | |
virtual const MultiSpeciesThermo & | speciesThermo (int k=-1) const |
void | initThermoFile (const string &inputFile, const string &id) |
Initialize a ThermoPhase object using an input file. | |
virtual void | setParameters (const AnyMap &phaseNode, const AnyMap &rootNode=AnyMap()) |
Set equation of state parameters from an AnyMap phase description. | |
AnyMap | parameters (bool withInput=true) const |
Returns the parameters of a ThermoPhase object such that an identical one could be reconstructed using the newThermo(AnyMap&) function. | |
const AnyMap & | input () const |
Access input data associated with the phase description. | |
AnyMap & | input () |
void | invalidateCache () override |
Invalidate any cached values which are normally updated only when a change in state is detected. | |
virtual void | getdlnActCoeffds (const double dTds, const double *const dXds, double *dlnActCoeffds) const |
Get the change in activity coefficients wrt changes in state (temp, mole fraction, etc) along a line in parameter space or along a line in physical space. | |
virtual void | getdlnActCoeffdlnX_diag (double *dlnActCoeffdlnX_diag) const |
Get the array of ln mole fraction derivatives of the log activity coefficients - diagonal component only. | |
virtual void | getdlnActCoeffdlnN_diag (double *dlnActCoeffdlnN_diag) const |
Get the array of log species mole number derivatives of the log activity coefficients. | |
virtual void | getdlnActCoeffdlnN (const size_t ld, double *const dlnActCoeffdlnN) |
Get the array of derivatives of the log activity coefficients with respect to the log of the species mole numbers. | |
virtual void | getdlnActCoeffdlnN_numderiv (const size_t ld, double *const dlnActCoeffdlnN) |
virtual string | report (bool show_thermo=true, double threshold=-1e-14) const |
returns a summary of the state of the phase as a string | |
Public Member Functions inherited from Phase | |
Phase ()=default | |
Default constructor. | |
Phase (const Phase &)=delete | |
Phase & | operator= (const Phase &)=delete |
virtual bool | isPure () const |
Return whether phase represents a pure (single species) substance. | |
virtual bool | hasPhaseTransition () const |
Return whether phase represents a substance with phase transitions. | |
virtual bool | isCompressible () const |
Return whether phase represents a compressible substance. | |
virtual map< string, size_t > | nativeState () const |
Return a map of properties defining the native state of a substance. | |
string | nativeMode () const |
Return string acronym representing the native state of a Phase. | |
virtual vector< string > | fullStates () const |
Return a vector containing full states defining a phase. | |
virtual vector< string > | partialStates () const |
Return a vector of settable partial property sets within a phase. | |
virtual size_t | stateSize () const |
Return size of vector defining internal state of the phase. | |
void | saveState (vector< double > &state) const |
Save the current internal state of the phase. | |
virtual void | saveState (size_t lenstate, double *state) const |
Write to array 'state' the current internal state. | |
void | restoreState (const vector< double > &state) |
Restore a state saved on a previous call to saveState. | |
virtual void | restoreState (size_t lenstate, const double *state) |
Restore the state of the phase from a previously saved state vector. | |
double | molecularWeight (size_t k) const |
Molecular weight of species k . | |
void | getMolecularWeights (double *weights) const |
Copy the vector of molecular weights into array weights. | |
const vector< double > & | molecularWeights () const |
Return a const reference to the internal vector of molecular weights. | |
const vector< double > & | inverseMolecularWeights () const |
Return a const reference to the internal vector of molecular weights. | |
void | getCharges (double *charges) const |
Copy the vector of species charges into array charges. | |
virtual void | setMolesNoTruncate (const double *const N) |
Set the state of the object with moles in [kmol]. | |
double | elementalMassFraction (const size_t m) const |
Elemental mass fraction of element m. | |
double | elementalMoleFraction (const size_t m) const |
Elemental mole fraction of element m. | |
double | charge (size_t k) const |
Dimensionless electrical charge of a single molecule of species k The charge is normalized by the the magnitude of the electron charge. | |
double | chargeDensity () const |
Charge density [C/m^3]. | |
size_t | nDim () const |
Returns the number of spatial dimensions (1, 2, or 3) | |
void | setNDim (size_t ndim) |
Set the number of spatial dimensions (1, 2, or 3). | |
virtual bool | ready () const |
Returns a bool indicating whether the object is ready for use. | |
int | stateMFNumber () const |
Return the State Mole Fraction Number. | |
virtual void | invalidateCache () |
Invalidate any cached values which are normally updated only when a change in state is detected. | |
bool | caseSensitiveSpecies () const |
Returns true if case sensitive species names are enforced. | |
void | setCaseSensitiveSpecies (bool cflag=true) |
Set flag that determines whether case sensitive species are enforced in look-up operations, for example speciesIndex. | |
vector< double > | getCompositionFromMap (const Composition &comp) const |
Converts a Composition to a vector with entries for each species Species that are not specified are set to zero in the vector. | |
void | massFractionsToMoleFractions (const double *Y, double *X) const |
Converts a mixture composition from mole fractions to mass fractions. | |
void | moleFractionsToMassFractions (const double *X, double *Y) const |
Converts a mixture composition from mass fractions to mole fractions. | |
string | name () const |
Return the name of the phase. | |
void | setName (const string &nm) |
Sets the string name for the phase. | |
string | elementName (size_t m) const |
Name of the element with index m. | |
size_t | elementIndex (const string &name) const |
Return the index of element named 'name'. | |
const vector< string > & | elementNames () const |
Return a read-only reference to the vector of element names. | |
double | atomicWeight (size_t m) const |
Atomic weight of element m. | |
double | entropyElement298 (size_t m) const |
Entropy of the element in its standard state at 298 K and 1 bar. | |
int | atomicNumber (size_t m) const |
Atomic number of element m. | |
int | elementType (size_t m) const |
Return the element constraint type Possible types include: | |
int | changeElementType (int m, int elem_type) |
Change the element type of the mth constraint Reassigns an element type. | |
const vector< double > & | atomicWeights () const |
Return a read-only reference to the vector of atomic weights. | |
size_t | nElements () const |
Number of elements. | |
void | checkElementIndex (size_t m) const |
Check that the specified element index is in range. | |
void | checkElementArraySize (size_t mm) const |
Check that an array size is at least nElements(). | |
double | nAtoms (size_t k, size_t m) const |
Number of atoms of element m in species k . | |
size_t | speciesIndex (const string &name) const |
Returns the index of a species named 'name' within the Phase object. | |
string | speciesName (size_t k) const |
Name of the species with index k. | |
const vector< string > & | speciesNames () const |
Return a const reference to the vector of species names. | |
size_t | nSpecies () const |
Returns the number of species in the phase. | |
void | checkSpeciesIndex (size_t k) const |
Check that the specified species index is in range. | |
void | checkSpeciesArraySize (size_t kk) const |
Check that an array size is at least nSpecies(). | |
void | setMoleFractionsByName (const Composition &xMap) |
Set the species mole fractions by name. | |
void | setMoleFractionsByName (const string &x) |
Set the mole fractions of a group of species by name. | |
void | setMassFractionsByName (const Composition &yMap) |
Set the species mass fractions by name. | |
void | setMassFractionsByName (const string &x) |
Set the species mass fractions by name. | |
void | setState_TD (double t, double rho) |
Set the internally stored temperature (K) and density (kg/m^3) | |
Composition | getMoleFractionsByName (double threshold=0.0) const |
Get the mole fractions by name. | |
double | moleFraction (size_t k) const |
Return the mole fraction of a single species. | |
double | moleFraction (const string &name) const |
Return the mole fraction of a single species. | |
Composition | getMassFractionsByName (double threshold=0.0) const |
Get the mass fractions by name. | |
double | massFraction (size_t k) const |
Return the mass fraction of a single species. | |
double | massFraction (const string &name) const |
Return the mass fraction of a single species. | |
void | getMoleFractions (double *const x) const |
Get the species mole fraction vector. | |
virtual void | setMoleFractions_NoNorm (const double *const x) |
Set the mole fractions to the specified values without normalizing. | |
void | getMassFractions (double *const y) const |
Get the species mass fractions. | |
const double * | massFractions () const |
Return a const pointer to the mass fraction array. | |
virtual void | setMassFractions_NoNorm (const double *const y) |
Set the mass fractions to the specified values without normalizing. | |
virtual void | getConcentrations (double *const c) const |
Get the species concentrations (kmol/m^3). | |
virtual double | concentration (const size_t k) const |
Concentration of species k. | |
virtual void | setConcentrations (const double *const conc) |
Set the concentrations to the specified values within the phase. | |
virtual void | setConcentrationsNoNorm (const double *const conc) |
Set the concentrations without ignoring negative concentrations. | |
double | temperature () const |
Temperature (K). | |
virtual double | electronTemperature () const |
Electron Temperature (K) | |
virtual double | density () const |
Density (kg/m^3). | |
virtual double | molarDensity () const |
Molar density (kmol/m^3). | |
virtual double | molarVolume () const |
Molar volume (m^3/kmol). | |
virtual void | setDensity (const double density_) |
Set the internally stored density (kg/m^3) of the phase. | |
virtual void | setTemperature (double temp) |
Set the internally stored temperature of the phase (K). | |
virtual void | setElectronTemperature (double etemp) |
Set the internally stored electron temperature of the phase (K). | |
double | mean_X (const double *const Q) const |
Evaluate the mole-fraction-weighted mean of an array Q. | |
double | mean_X (const vector< double > &Q) const |
Evaluate the mole-fraction-weighted mean of an array Q. | |
double | meanMolecularWeight () const |
The mean molecular weight. Units: (kg/kmol) | |
double | sum_xlogx () const |
Evaluate \( \sum_k X_k \ln X_k \). | |
size_t | addElement (const string &symbol, double weight=-12345.0, int atomicNumber=0, double entropy298=ENTROPY298_UNKNOWN, int elem_type=CT_ELEM_TYPE_ABSPOS) |
Add an element. | |
void | addSpeciesAlias (const string &name, const string &alias) |
Add a species alias (that is, a user-defined alternative species name). | |
virtual vector< string > | findIsomers (const Composition &compMap) const |
Return a vector with isomers names matching a given composition map. | |
virtual vector< string > | findIsomers (const string &comp) const |
Return a vector with isomers names matching a given composition string. | |
shared_ptr< Species > | species (const string &name) const |
Return the Species object for the named species. | |
shared_ptr< Species > | species (size_t k) const |
Return the Species object for species whose index is k. | |
void | ignoreUndefinedElements () |
Set behavior when adding a species containing undefined elements to just skip the species. | |
void | addUndefinedElements () |
Set behavior when adding a species containing undefined elements to add those elements to the phase. | |
void | throwUndefinedElements () |
Set the behavior when adding a species containing undefined elements to throw an exception. | |
Additional Inherited Members | |
Protected Member Functions inherited from SingleSpeciesTP | |
void | _updateThermo () const |
This internal routine calculates new species Cp0, H0, and S0 whenever the temperature has changed. | |
Protected Member Functions inherited from ThermoPhase | |
virtual void | getParameters (AnyMap &phaseNode) const |
Store the parameters of a ThermoPhase object such that an identical one could be reconstructed using the newThermo(AnyMap&) function. | |
Protected Member Functions inherited from Phase | |
void | assertCompressible (const string &setter) const |
Ensure that phase is compressible. | |
void | assignDensity (const double density_) |
Set the internally stored constant density (kg/m^3) of the phase. | |
void | setMolecularWeight (const int k, const double mw) |
Set the molecular weight of a single species to a given value. | |
virtual void | compositionChanged () |
Apply changes to the state which are needed after the composition changes. | |
Protected Attributes inherited from SingleSpeciesTP | |
double | m_press = OneAtm |
The current pressure of the solution (Pa). It gets initialized to 1 atm. | |
double | m_p0 = OneAtm |
double | m_h0_RT |
Dimensionless enthalpy at the (mtlast, m_p0) | |
double | m_cp0_R |
Dimensionless heat capacity at the (mtlast, m_p0) | |
double | m_s0_R |
Dimensionless entropy at the (mtlast, m_p0) | |
Protected Attributes inherited from ThermoPhase | |
MultiSpeciesThermo | m_spthermo |
Pointer to the calculation manager for species reference-state thermodynamic properties. | |
AnyMap | m_input |
Data supplied via setParameters. | |
double | m_phi = 0.0 |
Stored value of the electric potential for this phase. Units are Volts. | |
bool | m_chargeNeutralityNecessary = false |
Boolean indicating whether a charge neutrality condition is a necessity. | |
int | m_ssConvention = cSS_CONVENTION_TEMPERATURE |
Contains the standard state convention. | |
double | m_tlast = 0.0 |
last value of the temperature processed by reference state | |
Protected Attributes inherited from Phase | |
ValueCache | m_cache |
Cached for saved calculations within each ThermoPhase. | |
size_t | m_kk = 0 |
Number of species in the phase. | |
size_t | m_ndim = 3 |
Dimensionality of the phase. | |
vector< double > | m_speciesComp |
Atomic composition of the species. | |
vector< double > | m_speciesCharge |
Vector of species charges. length m_kk. | |
map< string, shared_ptr< Species > > | m_species |
UndefElement::behavior | m_undefinedElementBehavior = UndefElement::add |
Flag determining behavior when adding species with an undefined element. | |
bool | m_caseSensitiveSpecies = false |
Flag determining whether case sensitive species names are enforced. | |
|
explicit |
Construct and initialize a StoichSubstance ThermoPhase object directly from an input file.
infile | name of the input file. If blank, an empty phase will be created. |
id | name of the phase id in the file. If this is blank, the first phase in the file is used. |
Definition at line 20 of file StoichSubstance.cpp.
|
inlineoverridevirtual |
String indicating the thermodynamic model implemented.
Usually corresponds to the name of the derived class, less any suffixes such as "Phase", TP", "VPSS", etc.
Reimplemented from SingleSpeciesTP.
Definition at line 101 of file StoichSubstance.h.
|
inlineoverridevirtual |
Return whether phase represents a compressible substance.
Reimplemented from Phase.
Definition at line 105 of file StoichSubstance.h.
|
overridevirtual |
Report the Pressure. Units: Pa.
For an incompressible substance, the density is independent of pressure. This method simply returns the stored pressure value.
Reimplemented from Phase.
Definition at line 27 of file StoichSubstance.cpp.
|
overridevirtual |
Set the pressure at constant temperature. Units: Pa.
For an incompressible substance, the density is independent of pressure. Therefore, this method only stores the specified pressure value. It does not modify the density.
p | Pressure (units - Pa) |
Reimplemented from Phase.
Definition at line 32 of file StoichSubstance.cpp.
|
overridevirtual |
Returns the isothermal compressibility. Units: 1/Pa.
The isothermal compressibility is defined as
\[ \kappa_T = -\frac{1}{v}\left(\frac{\partial v}{\partial P}\right)_T \]
or
\[ \kappa_T = \frac{1}{\rho}\left(\frac{\partial \rho}{\partial P}\right)_T \]
Reimplemented from ThermoPhase.
Definition at line 37 of file StoichSubstance.cpp.
|
overridevirtual |
Return the volumetric thermal expansion coefficient. Units: 1/K.
The thermal expansion coefficient is defined as
\[ \beta = \frac{1}{v}\left(\frac{\partial v}{\partial T}\right)_P \]
Reimplemented from ThermoPhase.
Definition at line 42 of file StoichSubstance.cpp.
|
overridevirtual |
Returns the units of the "standard concentration" for this phase.
These are the units of the values returned by the functions getActivityConcentrations() and standardConcentration(), which can vary between different ThermoPhase-derived classes, or change within a single class depending on input options. See the documentation for standardConcentration() for the derived class for specific details.
Reimplemented from ThermoPhase.
Definition at line 49 of file StoichSubstance.cpp.
|
overridevirtual |
This method returns an array of generalized concentrations.
\( C^a_k \) are defined such that \( a_k = C^a_k / C^0_k, \) where \( C^0_k \) is a standard concentration defined below and \( a_k \) are activities used in the thermodynamic functions. These activity (or generalized) concentrations are used by kinetics manager classes to compute the forward and reverse rates of elementary reactions.
For a stoichiometric substance, there is only one species, and the generalized concentration is 1.0.
c | Output array of generalized concentrations. The units depend upon the implementation of the reaction rate expressions within the phase. |
Reimplemented from ThermoPhase.
Definition at line 54 of file StoichSubstance.cpp.
|
overridevirtual |
Return the standard concentration for the kth species.
The standard concentration \( C^0_k \) used to normalize the activity (that is, generalized) concentration. This phase assumes that the kinetics operator works on an dimensionless basis. Thus, the standard concentration is equal to 1.0.
k | Optional parameter indicating the species. The default is to assume this refers to species 0. |
Reimplemented from ThermoPhase.
Definition at line 59 of file StoichSubstance.cpp.
|
overridevirtual |
Natural logarithm of the standard concentration of the kth species.
k | index of the species (defaults to zero) |
Reimplemented from ThermoPhase.
Definition at line 64 of file StoichSubstance.cpp.
|
overridevirtual |
Get the array of chemical potentials at unit activity for the species at their standard states at the current T and P of the solution.
For a stoichiometric substance, there is no activity term in the chemical potential expression, and therefore the standard chemical potential and the chemical potential are both equal to the molar Gibbs function.
These are the standard state chemical potentials \( \mu^0_k(T,P) \). The values are evaluated at the current temperature and pressure of the solution
mu0 | Output vector of chemical potentials. Length: m_kk. |
Reimplemented from ThermoPhase.
Definition at line 71 of file StoichSubstance.cpp.
|
overridevirtual |
Get the nondimensional Enthalpy functions for the species at their standard states at the current T and P of the solution.
hrt | Output vector of nondimensional standard state enthalpies. Length: m_kk. |
Reimplemented from ThermoPhase.
Definition at line 77 of file StoichSubstance.cpp.
|
overridevirtual |
Get the array of nondimensional Entropy functions for the standard state species at the current T and P of the solution.
sr | Output vector of nondimensional standard state entropies. Length: m_kk. |
Reimplemented from ThermoPhase.
Definition at line 84 of file StoichSubstance.cpp.
|
overridevirtual |
Get the nondimensional Gibbs functions for the species in their standard states at the current T and P of the solution.
grt | Output vector of nondimensional standard state Gibbs free energies. Length: m_kk. |
Reimplemented from ThermoPhase.
Definition at line 89 of file StoichSubstance.cpp.
|
overridevirtual |
Get the nondimensional Heat Capacities at constant pressure for the species standard states at the current T and P of the solution.
cpr | Output vector of nondimensional standard state heat capacities. Length: m_kk. |
Reimplemented from ThermoPhase.
Definition at line 95 of file StoichSubstance.cpp.
|
overridevirtual |
Returns the vector of nondimensional Internal Energies of the standard state species at the current T and P of the solution.
For an incompressible, stoichiometric substance, the molar internal energy is independent of pressure. Since the thermodynamic properties are specified by giving the standard-state enthalpy, the term \( P_{ref} \hat v \) is subtracted from the specified reference molar enthalpy to compute the standard state molar internal energy.
urt | output vector of nondimensional standard state internal energies of the species. Length: m_kk. |
Reimplemented from ThermoPhase.
Definition at line 101 of file StoichSubstance.cpp.
|
overridevirtual |
Returns the vector of nondimensional internal Energies of the reference state at the current temperature of the solution and the reference pressure for each species.
urt | Output vector of nondimensional reference state internal energies of the species. Length: m_kk |
Reimplemented from ThermoPhase.
Definition at line 109 of file StoichSubstance.cpp.
|
overridevirtual |
Initialize the ThermoPhase object after all species have been set up.
This method is provided to allow subclasses to perform any initialization required after all species have been added. For example, it might be used to resize internal work arrays that must have an entry for each species. The base class implementation does nothing, and subclasses that do not require initialization do not need to overload this method. Derived classes which do override this function should call their parent class's implementation of this function as their last action.
When importing from an AnyMap phase description (or from a YAML file), setupPhase() adds all the species, stores the input data in m_input, and then calls this method to set model parameters from the data stored in m_input.
Reimplemented from ThermoPhase.
Definition at line 117 of file StoichSubstance.cpp.
|
overridevirtual |
Get phase-specific parameters of a Species object such that an identical one could be reconstructed and added to this phase.
name | Name of the species |
speciesNode | Mapping to be populated with parameters |
Reimplemented from ThermoPhase.
Definition at line 153 of file StoichSubstance.cpp.