Cantera  3.1.0a1
Loading...
Searching...
No Matches
Bibliography
[1]

R. W. Bilger. Turbulent jet diffusion flames. In N. A. Chigier, editor, Energy and Combustion Science, pages 109–131. Pergamon, 1979.

[2]

F. Bisetti and M. El Morsli. Calculation and analysis of the mobility and diffusion coefficient of thermal electrons in methane/air premixed flames. Combustion and Flame, 159(12):3518–3521, 2012.

[3]

P. Blowers and R. Masel. Engineering approximations for activation energies in hydrogen transfer reactions. AIChE Journal, 46(10):2041–2052, 2000.

[4]

R. V. Chiflikian. The analog of Blanc's law for drift velocities of electrons in gas mixtures in weakly ionized plasma. Physics of Plasmas, 2(10):3902–3909, 1995.

[5]

K. Denbigh. The Principles of Chemical Equilibrium. Cambridge University Press, Cambridge, fourth edition, 1981.

[6]

G. Dixon-Lewis. Flame structure and flame reaction kinetics ii. transport phenomena in multicomponent systems. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 307(1488):111–135, 1968.

[7]

R. G. Gilbert, K. Luther, and J. Troe. Theory of thermal unimolecular reactions in the fall-off range. II. weak collision rate constants. Berichte der Bunsengesellschaft für physikalische Chemie, 87(2):169–175, 1983.

[8]

W. L. Grosshandler. RADCAL: A narrow-band model for radiation calculations in a combustion environment. Technical Report 1402, National Institute of Standards and Technology, 1993.

[9]

J. T. Gudmundsson. On the effect of the electron energy distribution on the plasma parameters of an argon discharge: a global (volume-averaged) model study. Plasma Sources Science and Technology, 10(1):76, 2001.

[10]

G. J. M. Hagelaar and L. C. Pitchford. Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models. Plasma Sources Science and Technology, 14(4):722, 2005.

[11]

J. Han, X. Chen, Z. Zhang, Z. Li, F. Qi, Z. Wang, and Z. Sun. Numerical modelling of ion transport in flames. Combustion Theory and Modelling, 19(6):744–772, 2015.

[12]

C. E. Harvie and J. H. Weare. The prediction of mineral solubilities in natural waters: the Na–K-Mg-Ca-Cl-SO4-H2O system from zero to high concentration at 25° C. Geochimica et Cosmochimica Acta, 44(7):981–997, July 1980.

[13]

J. W. Johnson, E. H. Oelkers, and H. C. Helgeson. SUPCRT92: A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000°C. Computers & Geosciences, 18(7):899–947, 1992.

[14]

R. J. Kee, F. M. Rupley, and J. A. Miller. Chemkin-II: A fortran chemical kinetics package for the analysis of gas-phase chemical kinetics. Technical Report SAND89-8009, Sandia National Laboratories, 1989.

[15]

R. J. Kee, M. E. Coltrin, and P. Glarborg. Chemically Reacting Flow: Theory and Practice. John Wiley & Sons, 2003.

[16]

R. J. Kee, M. E. Coltrin, P. Glarborg, and H. Zhu. Chemically Reacting Flow: Theory and Practice. John Wiley & Sons, 2nd edition, 2017.

[17]

H. Khalilpour and G. Foroutan. The effects of electron energy distribution function on the plasma sheath structure in the presence of charged nanoparticles. Journal of Plasma Physics, 86(2):1–14, 2020.

[18]

S. Kim, J. Chen, T. Cheng, A. Gindulyte, J. He, S.He, Q. Li, B. A. Shoemaker, P. A. Thiessen, B. Yu, L. Zaslavsky, J.Zhangn, and E. E. Bolton. PubChem 2019 update: improved access to chemical data. Nucleic Acids Research, 47(D1):D1102–D1109, 2019.

[19]

I. A. Kossyi, A. Y. Kostinsky, A. A. Matveyev, and V. P. Silakov. Kinetic scheme of the non-equilibrium discharge in nitrogen-oxygen mixtures. Plasma Sources Science and Technology, 1(3):207, 1992.

[20]

F. Lindemann. Discussion on “the radiation theory of chemical action”. Trans. Faraday Soc., 17:598, 1922.

[21]

Y. Liu and B. Rogg. Modelling of thermally radiating diffusion flames with detailed chemistry and transport. volume 17, pages 114–127, 1991.

[22]

A. Lucassen, N. Labbe, P. R. Westmoreland, and K. Kohse-Höinghaus. Combustion chemistry and fuel-nitrogen conversion in a laminar premixed flame of morpholine as a model biofuel. Combustion and Flame, 158(9):1647–1666, 2011.

[23]

A. Luque. BOLOS: BOLtzmann equation solver Open Source library.

[24]

T. R. Marrero and E. A. Mason. Gaseous diffusion coefficients. Journal of Physical and Chemical Reference Data, 1(1):3–118, 1972.

[25]

E. A. Mason and A. P. Malinauskas. Gas transport in porous media: the dusty-gas model. Chemical Engineering Monographs, (17), 1983.

[26]

B. J. McBride, M. J. Zehe, and S. Gordon. NASA Glenn coefficients for calculating thermodynamic properties of individual species. Technical Report NASA/TP-2002-211556, National Aeronautics and Space Administration, 2002.

[27]

L. Monchick and E. A. Mason. Transport Properties of Polar Gases. The Journal of Chemical Physics, 35(5):1676–1697, 11 1961.

[28]

R. W. D. Nickalls. A new approach to solving the cubic: Cardan's solution revealed. The Mathematical Gazette, 77(480):354–359, 1993.

[29]

K. E. Niemeyer, N. J. Curtis, and C.-J. Sung. pyJac: Analytical Jacobian generator for chemical kinetics. Journal of Computational Science, 21:1–10, 2017.

[30]

T. Pedersen and R. .C. Brown. Simulation of electric field effects in premixed methane flames. Combustion and Flame, 94(4):433–448, 1993.

[31]

F. Perini, E. Galligani, and R. D. Reitz. An analytical Jacobian approach to sparse reaction kinetics for computationally efficient combustion modeling with large reaction mechanisms. Energy & Fuels, 26(8):4804–4822, 2012.

[32]

K. S. Pitzer. Thermodynamics of electrolytes. V. effects of higher-order electrostatic terms. Journal of Solution Chemistry, 4(3):249–265, 1975.

[33]

B. E. Poling, J. M. Prausnitz, and J. P. O'Connell. The Properties of Gases and Liquids. McGraw-Hill, New York, fifth edition, 2001.

[34]

J. Prager. Modeling and simulation of charged species in lean methane-oxygen flames. PhD thesis, Technische Universität Darmstadt, 2005.

[35]

W. C. Reynolds. Thermodynamic Properties in SI: graphs, tables, and computational equations for forty substances. Stanford University, Stanford, 1979.

[36]

S. Selle and U. Riedel. Transport properties of ionized species. Annals of the New York Academy of Sciences, 891(1):72–80, 1999.

[37]

S. Selle and U. Riedel. Transport coefficients of reacting air at high temperatures. In 38th Aerospace Sciences Meeting and Exhibit, pages 99–0081. American Institute of Aeronautics and Astronautics, 2000.

[38]

J. V. Sengers and J. T. R. Watson. Improved international formulations for the viscosity and thermal conductivity of water substance. Journal of Physical and Chemical Reference Data, 15(4):1291–1300, 1986.

[39]

L. F. Silvester and K. S. Pitzer. Thermodynamics of electrolytes. 8. high-temperature properties, including enthalpy and heat capacity, with application to sodium chloride. Journal of Physical Chemistry, 81(19):1822–1828, 1977.

[40]

W. R. Smith and R. W. Missen. Chemical Reaction Equilibrium Analysis: Theory and Algorithms. Wiley, New York, 1982.

[41]

P. H. Stewart, C. W. Larson, and D. Golden. Pressure and temperature dependence of reactions proceeding via a bound complex. 2. application to 2 CH3 -> C2H5 + H. Combustion and Flame, 75(1):25–40, 1989.

[42]

S. Takahashi. Preparation of a generalized chart for the diffusion coefficients of gases at high pressures. Journal of Chemical Engineering of Japan, 7(6):417–420, 1975.

[43]

R. Tillner-Roth and H. D. Baehr. An international standard formulation for the thermodynamic properties of 1,1,1,2-tetrafluoroethane (HFC-134a) for temperatures from 170 K to 455 K and pressures up to 70 MPa. Journal of Physical and Chemical Reference Data, 23(5):657–729, 1994.

[44]

W. Tsang and J. T. Herron. Chemical kinetic data base for propellant combustion I. reactions involving NO, NO2, HNO, HNO2, HCN and N2O. Journal of Physical and Chemical Reference Data, 20(3):779–798, 1991.

[45]

J. W. Veldsink, R. M. J. van Damme, G. F. Versteeg, and W. P. M. van Swaaij. The use of the dusty gas model for the description of mass transport with chemical reaction in porous media. Chemical Engineering Journal, 57(2):115–125, 1995.

[46]

L. A. Viehland, J. W. McConkey, and J. W. Hogan. Tables of transport collision integrals for (n, 6, 4) ion-neutral potentials. Atomic Data and Nuclear Data Tables, 16(6):495–514, 1975.

[47]

W. Wagner and A. Pruß. The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. Journal of Physical and Chemical Reference Data, 31(2):387–535, 2002.

[48]

H. Zhu and R. J. Kee. Modeling electrochemical impedance spectra in SOFC button cells with internal methane reforming. Journal of The Electrochemical Society, 153(9):A1765–A1772, 2006.

[49]

H. Zhu, R. J. Kee, V. M. Janardhanan, O. Deutschmann, and D. G. Goodwin. Modeling elementary heterogeneous chemistry and electrochemistry in solid-oxide fuel cells. Journal of The Electrochemical Society, 152(12):A2427–A2439, 2005.